如何删除培训定义?

时间:2018-04-22 19:15:19

标签: ibm-cloud watson-studio

我正在尝试用于神经网络的Watson Studio视觉建模器。在学习过程中,我尝试了一些不同的设计,并发布了几个培训定义。

如果我导航到Experiment Builder,我会看到很多定义有些陈旧,不再需要。

enter image description here

如何删除旧的培训定义? (理想情况下来自Watson Studio UI)

2 个答案:

答案 0 :(得分:1)

Watson Machine Learning python client不支持删除训练运行定义。 WML's python client API显示支持的选项。 WML团队正在努力添加这样的删除功能。

与此同时,您可以使用WML's CLI tool执行bx ml delete

NAME: delete - Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs USAGE: bx ml delete models MODEL-ID bx ml delete deployments MODEL-ID DEPLOYMENT-ID bx ml delete training-runs TRAINING-RUN-ID bx ml delete training-definitions TRAINING-DEFINITION-ID bx ml delete experiments EXPERIMENT-ID bx ml delete experiment-runs EXPERIMENT-ID EXPERIMENT-RUN-ID

使用bx ml list获取有关您要删除的项目的详细信息:

答案 1 :(得分:1)

实际上,python客户端支持删除训练定义。 您只需调用 client.repository.delete(artifact_uid)。可以使用相同的方法从存储库中删除任何项目(model,training_definition,experiment)。它记录在python客户端文档btw:

删除(artifact_uid)

Delete model, definition or experiment from repository.
Parameters: artifact_uid ({str_type}) – stored model, definition, or experiment UID

A way you might use me is:

>>> client.repository.delete(artifact_uid)

Training_run与training_definition完全不同。 您也可以根据需要将其删除:

删除(run_uid)

Delete training run.
Parameters: run_uid ({str_type}) – ID of trained model

A way you might use me is:

>>> client.training.delete(run_uid)

如果需要,您也可以通过调用

删除experiment_run

删除(experiment_run_uid)

Delete experiment run.
Parameters: experiment_run_uid ({str_type}) – experiment run UID

A way you might use me is

>>> client.experiments.delete(experiment_run_uid)

有关详细信息,请参阅python客户端文档:[1]