我使用Tensorflow和numpy随机函数,但输出值相同。如何生成不同的值?您可能建议使用本机随机函数,但我需要使用numpy随机函数。
import tensorflow as tf
import random
def get_rand():
return random.randint(0,5)
a = get_rand()
tfprint = tf.Print(a, [a])
for i in range(10):
print(print(get_rand()))
with tf.Session() as sess:
for i in range(10):
sess.run(tfprint)
答案 0 :(得分:1)
使用tf.py_func,将Numpy函数转换为Tensorflow函数。
import tensorflow as tf
import random
def get_rand():
return random.randint(0,5)
a = tf.py_func(get_rand, [], tf.int64)
tfprint = tf.Print(a, [a])
for i in range(10):
print(get_rand())
with tf.Session() as sess:
for i in range(10):
sess.run(tfprint)
答案 1 :(得分:0)
您需要使用placeholders
和feed_dict
变量
import tensorflow as tf
import random
def get_rand():
return random.randint(0,5)
a = tf.placeholder(tf.int32)
tfprint = tf.Print(a, [a])
with tf.Session() as sess:
for i in range(10):
sess.run(tfprint, feed_dict={a: get_rand()})
您可以阅读有关占位符here
的更多信息