输入DataFrame" df"如下(请注意' id'列中的值):
| id | name |
|-------|---------------------------------------------------------------------------------------|
| a1xy | [ { "event": "sports", "start": "100"}, { "event": "lunch", "start": "121" } ] |
| a7yz | [ { "event": "lunch", "start": "109"}, { "event": "movie", "start": "97" } ] |
| bx4y | [ { "event": "dinner", "start": "78"}, { "event": "sleep", "start": "25" } ] |
我想展平JSON数组元素,以便我的结果输出为:
| id | name.event | name.start |
|-------|------------|------------|
| a1xy | sports | 100 |
| a1xy | lunch | 121 |
| a7yz | lunch | 109 |
| a7yz | movie | 97 |
| bx4y | dinner | 78 |
| bx4y | sleep | 25 |
' id'中的值列需要正确映射。我怎么能用Python做到这一点?
我试过了:
k = df.name.map(json.loads).apply(pd.DataFrame).tolist()
final_df = pd.concat(k)
但是我无法映射' id'列。
答案 0 :(得分:1)
您可以将列表理解与展平结合使用,并按id
值更新每个字典,最后调用DataFrame
构造函数:
df['name'] = df['name'].map(json.loads)
df = pd.DataFrame([dict(y, id=i) for i, x in zip(df['id'],df['name']) for y in x])
print (df)
event id start
0 sports a1xy 100
1 lunch a1xy 121
2 lunch a7yz 109
3 movie a7yz 97
4 dinner bx4y 78
5 sleep bx4y 25
但如果输入为json
,则最好使用json_normalize
。
<强>计时强>:
df=pd.DataFrame([
['a1xy',[{ "event": "sports", "start": "100"}, { "event": "lunch", "start": "121" } ]],
['a7yz',[{ "event": "lunch", "start": "109"}, { "event": "movie", "start": "97" } ]],
['bx4y',[{ "event": "dinner", "start": "78"}, { "event": "sleep", "start": "25" } ]]],
columns=['id','name'])
print (df)
#3k rows
df = pd.concat([df] * 1000, ignore_index=True)
In [276]: %%timeit
...: pd.DataFrame([dict(y, id=i) for i, x in zip(df['id'],df['name']) for y in x])
9.49 ms ± 230 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [277]: %%timeit
...: finalArray=[]
...: df.apply(lambda x: addtoArray(x,finalArray),axis=1)
...: pd.DataFrame(finalArray,columns=['col1','event','start'])
...:
1.81 s ± 33.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
列表理解解决方案更快180x
。
答案 1 :(得分:0)
您也可以在apply函数中使用外部函数
import json
data=pd.DataFrame([
['a1xy',[{ "event": "sports", "start": "100"}, { "event": "lunch", "start": "121" } ]],
['a7yz',[{ "event": "lunch", "start": "109"}, { "event": "movie", "start": "97" } ]],
['bx4y',[{ "event": "dinner", "start": "78"}, { "event": "sleep", "start": "25" } ]]],columns=['id','name'])
def addtoArray(x,finalArray):
finalArray.extend(np.insert(pd.DataFrame(x['name']).values,0,x['id'],axis=1).tolist())
finalArray=[]
data.apply(lambda x: addtoArray(x,finalArray),axis=1)
finalArray=pd.DataFrame(finalArray,columns=['col1','event','start'])
print(finalArray)
col1 event start
0 a1xy sports 100
1 a1xy lunch 121
2 a7yz lunch 109
3 a7yz movie 97
4 bx4y dinner 78
5 bx4y sleep 25
答案 2 :(得分:0)
假设您有json对象列表作为以下输入
data = [{'id': 'a1xy', 'name': [{'event': 'sports', 'start': '100'},{'event': 'lunch', 'start': '121'}]},
{'id': 'a7yz', 'name': [{'event':'lunch', 'start': '109'},'event': 'movie', 'start': '97'}]},
{'id': 'bx4y', 'name': [{'event': 'dinner', 'start': '78'},{'event': 'sleep', 'start': '25'}]}]
df = json_normalize(data, record_path='name', meta='id', record_prefix='name.')
print(df)