我需要为Dataframe设置样式:
df = DataFrame({'A':['Bob','Rob','Dob'],'B':['Bob', 'Rob','Dob'],'C':['Bob','Dob','Dob'],'D':['Ben','Ten','Zen'],'E':['Ben','Ten','Zu']})
df
A B C D E
0 Bob Bob Bob Ben Ben
1 Rob Rob Dob Ten Ten
2 Dob Dob Dob Zen Zu
我需要立即比较列A,B,C以检查它们是否相等,然后将高亮/颜色应用于不相等的值。 然后我需要比较列D,E以检查它们是否相等然后将高亮/颜色应用于不相等的值
像:
df[['A','B','C']].eq(df.iloc[:, 0], axis=0)
A B C
0 True True True
1 True True False
2 True True True
我无法将df.style与df的子集一起使用,然后连续。
答案 0 :(得分:2)
我认为需要:
def highlight(x):
c1 = 'background-color: red'
c2 = ''
#define groups of columns for compare by first value of group ->
#first with A, second with D
cols = [['A','B','C'], ['D','E']]
#join all masks together
m = pd.concat([x[g].eq(x[g[0]], axis=0) for g in cols], axis=1)
df1 = pd.DataFrame(c2, index=x.index, columns=x.columns)
df1 = df1.where(m, c1)
return df1
df.style.apply(highlight, axis=None)
编辑:对于多种颜色,可以按颜色创建字典,并使用列进行比较:
def highlight(x):
c = 'background-color: '
cols = {'red': ['A','B','C'], 'blue':['D','E']}
m = pd.concat([x[v].eq(x[v[0]], axis=0).applymap({False:c+k, True:''}.get)
for k, v in cols.items()], axis=1)
return m
EDIT1:
替代解决方案:
def highlight(x):
c = 'background-color: '
cols = {'red': ['A','B','C'], 'blue':['D','E']}
df1 = pd.DataFrame(c, index=x.index, columns=x.columns)
for k, v in cols.items():
m = x[v].eq(x[v[0]], axis=0).reindex(columns=x.columns, fill_value=True)
df1 = df1.where(m, c+k)
return df1
df.style.apply(highlight, axis=None)