为数据透视带有多列的DataFrame

时间:2018-04-20 14:11:07

标签: python pandas dataframe pivot-table

我有一个数据框,我想只将几行转置为列。

这就是我现在所拥有的。

   Entity   Name        Date  Value
0     111  Name1  2018-03-31    100
1     111  Name2  2018-02-28    200
2     222  Name3  2018-02-28   1000
3     333  Name1  2018-01-31   2000

我想创建日期作为列,然后添加值。像这样:

   Entity   Name  2018-01-31  2018-02-28  2018-03-31
0     111  Name1         NaN         NaN       100.0
1     111  Name2         NaN       200.0         NaN
2     222  Name3         NaN      1000.0         NaN
3     333  Name1      2000.0         NaN         NaN

对于两个不同的Name,我可以有相同的Entity。这是一个更新的数据集。

代码:

import pandas as pd
import datetime

data1 = {
         'Entity': [111,111,222,333],
         'Name': ['Name1','Name2', 'Name3','Name1'],
         'Date': [datetime.date(2018,3, 31), datetime.date(2018,2,28), datetime.date(2018,2,28), datetime.date(2018,1,31)],
         'Value': [100,200,1000,2000]
    }
df1 = pd.DataFrame(data1, columns= ['Entity','Name','Date', 'Value'])

我如何实现这一目标?有什么指针吗?谢谢大家。

2 个答案:

答案 0 :(得分:3)

根据您的更新,您需要pivot_table两个索引列 -

v = df1.pivot_table(
        index=['Entity', 'Name'], 
         columns='Date', 
         values='Value'
).reset_index()
v.index.name = v.columns.name = None

v
   Entity   Name  2018-01-31  2018-02-28  2018-03-31
0     111  Name1         NaN         NaN       100.0
1     111  Name2         NaN       200.0         NaN
2     222  Name3         NaN      1000.0         NaN
3     333  Name1      2000.0         NaN         NaN

答案 1 :(得分:3)

来自unstack

df1.set_index(['Entity','Name','Date']).Value.unstack().reset_index()

Date  Entity   Name  2018-01-31 00:00:00  2018-02-28 00:00:00  \
0        111  Name1                  NaN                  NaN   
1        111  Name2                  NaN                200.0   
2        222  Name3                  NaN               1000.0   
3        333  Name1               2000.0                  NaN   

Date  2018-03-31 00:00:00  
0                   100.0  
1                     NaN  
2                     NaN  
3                     NaN