是否应在线性模型中为其他解释变量添加虚拟变量变量系数? 我认为它只会改变截距,但系数也会因非拦截项而改变。
以下是包含mtcars
数据的示例代码(来自:
http://rstudio-pubs-static.s3.amazonaws.com/20516_29b941670a4b42688292b4bb892a660f.html
data(mtcars)
mtcars$am_text <- as.factor(mtcars$am)
levels(mtcars$am_text) <- c("Automatic", "Manual")
fit1 <- lm(mpg ~ am_text + wt, data = mtcars)
summary(fit1)
Call:
lm(formula = mpg ~ am_text + wt, data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-4.5295 -2.3619 -0.1317 1.4025 6.8782
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.32155 3.05464 12.218 5.84e-13 ***
am_textManual -0.02362 1.54565 -0.015 0.988
wt -5.35281 0.78824 -6.791 1.87e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.098 on 29 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7358
F-statistic: 44.17 on 2 and 29 DF, p-value: 1.579e-09
现在运行带有子集数据的线性模型:
# Here is without dummy variable, but now with subset data
fit2 <- lm(mpg ~ wt, data = mtcars[mtcars$am_text == "Automatic",])
summary(fit2)
Call:
lm(formula = mpg ~ wt, data = mtcars[mtcars$am_text == "Automatic",])
Residuals:
Min 1Q Median 3Q Max
-3.6004 -1.5227 -0.2168 1.4816 5.0610
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.4161 2.9467 10.661 6.01e-09 ***
wt -3.7859 0.7666 -4.939 0.000125 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.528 on 17 degrees of freedom
Multiple R-squared: 0.5893, Adjusted R-squared: 0.5651
F-statistic: 24.39 on 1 and 17 DF, p-value: 0.0001246
答案 0 :(得分:1)
在lm
中,当使用普通最小二乘法(OLS)拟合模型时,最小化残差平方和(SSR),这是模型参数的函数。通常在OLS中,对参数没有约束。
lm
将只返回导致最低SSR的参数估计值。在最小化过程中,所有参数值都可以自由变化。
有关详细信息,请查看例如the Wikipedia entry on OLS或任何统计资料。
答案 1 :(得分:1)
实际上,问题是fit1
中的斜率系数实际上是自动和手动汽车的组合,即使每个因素都有自己的拦截。如果您在am_text
和wt
之间包含互动字词(am_text:wt
),那么您可以更好地与仅自动汽车(fit2
)的模型进行比较。
fit3 <- lm(mpg ~ am_text + wt + am_text:wt, data = mtcars)
summary(fit3)
# Call:
# lm(formula = mpg ~ am_text * wt, data = mtcars)
#
# Residuals:
# Min 1Q Median 3Q Max
# -3.6004 -1.5446 -0.5325 0.9012 6.0909
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 31.4161 3.0201 10.402 4.00e-11 ***
# am_textManual 14.8784 4.2640 3.489 0.00162 **
# wt -3.7859 0.7856 -4.819 4.55e-05 ***
# am_textManual:wt -5.2984 1.4447 -3.667 0.00102 **
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 2.591 on 28 degrees of freedom
# Multiple R-squared: 0.833, Adjusted R-squared: 0.8151
# F-statistic: 46.57 on 3 and 28 DF, p-value: 5.209e-11
现在注意fit3
的系数包含自动车辆的截距和斜率,它们匹配fit2
的系数:
coef(fit2) # fit only to automatic
# (Intercept) wt
# 31.416055 -3.785908
coef(fit3)
# (Intercept) am_textManual wt am_textManual:wt
# 31.416055 14.878423 -3.785908 -5.298360
答案 2 :(得分:0)
是的,如果要在模型中添加变量,则应该预期系数会发生变化。请记住,任何变量的系数始终与模型中存在的其他变量有关。
如果您有Y = aX1 + bX2 + cX3 + E,并且您在模型中添加X4,则应该预期a,b和c将发生变化(除非X4对模型没有任何影响)。