我试图计算spark数据集中每列中唯一元素的数量。
然而似乎火花不能识别tally()
k<-collect(s%>%group_by(grouping_type)%>%summarise_each(funs(tally(distinct(.)))))
Error: org.apache.spark.sql.AnalysisException: undefined function TALLY
似乎火花并不能识别简单的r函数,例如&#34; unique&#34;或&#34;长度&#34;。我可以在本地数据上运行代码,但是当我尝试在spark表上运行完全相同的代码时,它不起作用。
```
d<-data.frame(cbind(seq(1,10,1),rep(1,10)))
d$group<-rep(c("a","b"),each=5)
d%>%group_by(group)%>%summarise_each(funs(length(unique(.))))
A tibble: 2 × 3
group X1 X2
<chr> <int> <int>
1 a 5 1
2 b 5 1
k<-collect(s%>%group_by(grouping_type)%>%summarise_each(funs(length(unique(.)))))
Error: org.apache.spark.sql.AnalysisException: undefined function UNIQUE;
```
答案 0 :(得分:1)
library(sparklyr)
library(dplyr)
#I am on Spark V. 2.1
#Building example input (local)
d <- data.frame(cbind(seq(1, 10, 1), rep(1,10)))
d$group <- rep(c("a","b"), each = 5)
d
#Spark tbl
sdf <- sparklyr::sdf_copy_to(sc, d)
# The Answer
sdf %>%
group_by(group) %>%
summarise_all(funs(n_distinct)) %>%
collect()
#Output
group X1 X2
<chr> <dbl> <dbl>
1 b 5 1
2 a 5 1
注意:鉴于我们正在使用sparklyr
,我选择dplyr::n_distinct()
。
次要:dplyr::summarise_each
已弃用。因此,dplyr::summarise_all
。
答案 1 :(得分:-2)
请记住,在编写sparlyr时,您实际上正在转换为spark-sql,因此您可能需要不时使用spark-sql动词。这是像count
和distinct
这样的spark-sql动词派上用场的时候之一。
library(sparkylr)
sc <- spark_connect()
iris_spk <- copy_to(sc, iris)
# for instance this does not work in R, but it does in sparklyr
iris_spk %>%
summarise(Species = distinct(Species))
# or
iris_spk %>%
summarise(Species = approx_count_distinct(Species))
# this does what you are looking for
iris_spk %>%
group_by(species) %>%
summarise_all(funs(n_distinct))
# for larger data sets this is much faster
iris_spk %>%
group_by(species) %>%
summarise_all(funs(approx_count_distinct))