使用sparklyr中的dplyr计算每列中唯一元素的数量

时间:2018-04-19 20:47:12

标签: r apache-spark statistics dplyr sparklyr

我试图计算spark数据集中每列中唯一元素的数量。

然而似乎火花不能识别tally() k<-collect(s%>%group_by(grouping_type)%>%summarise_each(funs(tally(distinct(.))))) Error: org.apache.spark.sql.AnalysisException: undefined function TALLY

似乎火花并不能识别简单的r函数,例如&#34; unique&#34;或&#34;长度&#34;。我可以在本地数据上运行代码,但是当我尝试在spark表上运行完全相同的代码时,它不起作用。

```

d<-data.frame(cbind(seq(1,10,1),rep(1,10)))
d$group<-rep(c("a","b"),each=5)
d%>%group_by(group)%>%summarise_each(funs(length(unique(.))))
A tibble: 2 × 3
  group    X1    X2
  <chr> <int> <int>
1     a     5     1
2     b     5     1
k<-collect(s%>%group_by(grouping_type)%>%summarise_each(funs(length(unique(.)))))
Error: org.apache.spark.sql.AnalysisException: undefined function UNIQUE;

```

2 个答案:

答案 0 :(得分:1)

library(sparklyr)
library(dplyr)
#I am on Spark V. 2.1

#Building example input (local)
d <- data.frame(cbind(seq(1, 10, 1), rep(1,10)))
d$group <- rep(c("a","b"), each = 5)
d

#Spark tbl 
sdf <- sparklyr::sdf_copy_to(sc, d)

# The Answer
sdf %>% 
    group_by(group) %>% 
    summarise_all(funs(n_distinct)) %>%
    collect()

#Output
  group    X1    X2
  <chr> <dbl> <dbl>
1     b     5     1
2     a     5     1

注意:鉴于我们正在使用sparklyr,我选择dplyr::n_distinct()。 次要:dplyr::summarise_each已弃用。因此,dplyr::summarise_all

答案 1 :(得分:-2)

请记住,在编写sparlyr时,您实际上正在转换为spark-sql,因此您可能需要不时使用spark-sql动词。这是像countdistinct这样的spark-sql动词派上用场的时候之一。

library(sparkylr)

sc <- spark_connect()
iris_spk <- copy_to(sc, iris)

# for instance this does not work in R, but it does in sparklyr
iris_spk %>%
  summarise(Species = distinct(Species))
# or
iris_spk %>%
  summarise(Species = approx_count_distinct(Species))

# this does what you are looking for
iris_spk %>% 
    group_by(species) %>%
    summarise_all(funs(n_distinct))

# for larger data sets this is much faster
iris_spk %>% 
    group_by(species) %>%
    summarise_all(funs(approx_count_distinct))