我有两个数据框nf
和nf1
nf
如下:
StationID DateTime Channel Class1Count Class2Count Class3Count Class4Count Class5Count Class6Count Class7Count ... Station-ID1 Record Type FIPS State Code Restrictions Month Day Year Hour Total Interval Volume Classification Data Time Interval
0 1 2017-10-01 00:00:00 1 1 201 8 2 0 0 0 ... 111001 C 11 0 10 1 2017 0 212
1 1 2017-10-01 00:00:00 2 0 138 17 2 0 0 0 ... 111002 C 11 0 10 1 2017 0 157
2 1 2017-10-01 00:00:00 3 0 190 63 0 5 0 0 ... 111002 C 11 0 10 1 2017 0 258
3 1 2017-10-01 00:00:00 4 0 150 8 0 0 0
和nf1
如下
Class1Count Class2Count Class3Count Class4Count Class5Count Class6Count Class7Count Class8Count Class9Count Class10Count Class11Count Class12Count Class13Count Class14Count Class15Count Total Interval Volume
Channel
1 1.231800 217.339674 22.622814 2.015312 4.725919 0.882855 0.172724 0.777843 0.658472 0.429533 0.000053 0.000053 0.219879 0.0 0.975575 252.052506
2 2.231112 309.971548 31.127689 3.566335 12.905425 1.029141 0.129119 1.352072 0.450514 0.075925 0.000689 0.001007 0.022359 0.0 0.068878 362.931811
3 1.566203 295.166053 39.603417 8.349304 27.653974 1.021972 0.292649 1.522719 1.309444 0.674738 0.000460 0.000690 0.428506 0.0 19.633268 397.223398
4 3.503365 327.521710 18.011284 3.794444 47.587370 0.865712 0.187673 4.342154 0.977762 0.753398 0.001188 0.000198 0.599248 0.0 8.785139 416.930645
5 1.828119 290.336466 94.103376 3.224558 81.108446 1.465315 0.321380 4.821813 1.323235 0.924199 0.000618 0.000618 0.710523 0.0 3.253741 483.422406
6 1.746899 223.591279 32.923450 2.229845 5.561628 0.788566 0.878682 1.137791 0.689147
nf1
是nf
按渠道的平均分组。
我想删除nf中的所有行,其中class2count小于nf1
中class2count的10%,并且它应该是相同的通道,这意味着它应该是针对该特定通道的
有人可以帮助我
答案 0 :(得分:1)
首先创建一个系列映射通道以表示Class2Count:
s = nf1['Class2Count']
然后相应地过滤nf
:
nf = nf[nf['Class2Count'] > 0.1 * nf['Channel'].map(s)]