df = pd.DataFrame({'a': [1,1,1,1,2,2,2,2,3,3,3,3], 'b': [5,5,1,1,3,3,3,1,2,1,1,1,]})
>>> df
a b
0 1 5
1 1 5
2 1 1
3 1 1
4 2 3
5 2 3
6 2 3
7 2 1
8 3 2
9 3 1
10 3 1
11 3 1
>>> df.groupby(['a','b']).size().to_dict()
{(1, 5): 2, (3, 2): 1, (2, 3): 3, (3, 1): 3, (1, 1): 2, (2, 1): 1}
我得到的是每个a
和b
组合与tuple
对key
的计数,但我想要的是:
{1: {5: 2, 1: 2}, 2: {3: 3, 1: 1}, 3: {2: 1, 1: 3} }
答案 0 :(得分:2)
你需要在词典理解中增加groupby
:
i = df.groupby(['a','b']).size().reset_index(level=1)
j = {k : dict(g.values) for k, g in i.groupby(level=0)}
print(j)
{
1: {1: 2, 5: 2},
2: {1: 1, 3: 3},
3: {1: 3, 2: 1}
}
答案 1 :(得分:2)
您可以使用collections.defaultdict
作为O(n)解决方案。
from collections import defaultdict
df = pd.DataFrame({'a': [1,1,1,1,2,2,2,2,3,3,3,3], 'b': [5,5,1,1,3,3,3,1,2,1,1,1,]})**Option 2: defaultdict**
d = defaultdict(lambda: defaultdict(int))
for i, j in map(tuple, df.values):
d[i][j] += 1
# defaultdict(<function __main__.<lambda>>,
# {1: defaultdict(int, {1: 2, 5: 2}),
# 2: defaultdict(int, {1: 1, 3: 3}),
# 3: defaultdict(int, {1: 3, 2: 1})})
答案 2 :(得分:2)
from collections import Counter
import pandas as pd
s = pd.Series(Counter(zip(df.a, df.b)))
{
n: d.xs(n).to_dict()
for n, d in s.groupby(level=0)
}
{1: {1: 2, 5: 2}, 2: {1: 1, 3: 3}, 3: {1: 3, 2: 1}}