按组

时间:2018-04-19 15:14:24

标签: r dplyr regression grouping modelr

我在数据集中按组估算回归模型,然后我希望为所有组添加正确的拟合值。

我正在尝试以下方法:

library(dplyr)
library(modelr)

df <- tribble(
  ~year, ~country, ~value,
  2001, "France", 55, 
  2002, "France", 53, 
  2003, "France", 31, 
  2004, "France", 10, 
  2005, "France", 30, 
  2006, "France", 37, 
  2007, "France", 54, 
  2008, "France", 58, 
  2009, "France", 50, 
  2010, "France", 40, 
  2011, "France", 49, 
  2001, "USA", 55,
  2002, "USA", 53,
  2003, "USA", 64,
  2004, "USA", 40,
  2005, "USA", 30,
  2006, "USA", 39,
  2007, "USA", 55,
  2008, "USA", 53,
  2009, "USA", 71,
  2010, "USA", 44,
  2011, "USA", 40
)

rmod <- df %>% 
  group_by(country) %>% 
  do(fitModels = lm("value ~ year", data = .))

df <- df %>% 
  add_predictions(rmod)

抛出错误:

Error in UseMethod("predict") : 
  no applicable method for 'predict' applied to an object of class "c('rowwise_df', 'tbl_df', 'tbl', 'data.frame')"

我想获得一个列,其中包含每个国家/地区的每个拟合值,或者每个国家/地区都有一个预测值列。在add_predictions()调用后将模型保存为列表时,do()函数似乎无法正常工作。

3 个答案:

答案 0 :(得分:4)

还有其他一些方法可以攻击它。

可能是最直接的,但你失去了中间模型:

rmod <- df %>%
  group_by(country) %>%
  mutate(fit = lm(value ~ year)$fitted.values) %>%
  ungroup
rmod
# # A tibble: 22 × 4
#     year country value      fit
#    <dbl>   <chr> <dbl>    <dbl>
# 1   2001  France    55 38.13636
# 2   2002  France    53 39.00000
# 3   2003  France    31 39.86364
# 4   2004  France    10 40.72727
# 5   2005  France    30 41.59091
# 6   2006  France    37 42.45455
# 7   2007  France    54 43.31818
# 8   2008  France    58 44.18182
# 9   2009  France    50 45.04545
# 10  2010  France    40 45.90909
# # ... with 12 more rows

另一种方式是使用&#34; tidy&#34;用于将数据,模型和结果封装到框架内的单个单元格中的模型:

rmod <- df %>%
  group_by(country) %>%
  nest() %>%
  mutate(mdl = map(data, ~ lm(value ~ year, data=.))) %>%
  mutate(fit = map(mdl, ~ .$fitted.values))
rmod
# # A tibble: 2 × 4
#   country              data      mdl        fit
#     <chr>            <list>   <list>     <list>
# 1  France <tibble [11 × 2]> <S3: lm> <dbl [11]>
# 2     USA <tibble [11 × 2]> <S3: lm> <dbl [11]>

此方法的优点是,您可以根据需要根据需要访问模型的其他属性,可能是summary( filter(rmod, country == "France")$mdl[[1]] )。 ([[1]]是必需的,因为使用tibble s,$mdl将始终返回list。)

您可以按如下方式提取/取消它:

select(rmod, -mdl) %>% unnest()
# # A tibble: 22 × 4
#    country      fit  year value
#      <chr>    <dbl> <dbl> <dbl>
# 1   France 38.13636  2001    55
# 2   France 39.00000  2002    53
# 3   France 39.86364  2003    31
# 4   France 40.72727  2004    10
# 5   France 41.59091  2005    30
# 6   France 42.45455  2006    37
# 7   France 43.31818  2007    54
# 8   France 44.18182  2008    58
# 9   France 45.04545  2009    50
# 10  France 45.90909  2010    40
# # ... with 12 more rows

(不幸的是,这些专栏已被重新订购,但这种美学很容易得到补救。)

修改

如果您希望/需要在此处使用modelr - 具体信息,请尝试:

rmod <- df %>%
  group_by(country) %>%
  nest() %>%
  mutate(mdl = map(data, ~ lm(value ~ year, data=.))) %>%
  mutate(fit = map(mdl, ~ .$fitted.values)) %>%
  mutate(data = map2(data, mdl, add_predictions))
rmod
# # A tibble: 2 x 4
#   country data              mdl      fit       
#   <chr>   <list>            <list>   <list>    
# 1 France  <tibble [11 x 3]> <S3: lm> <dbl [11]>
# 2 USA     <tibble [11 x 3]> <S3: lm> <dbl [11]>
select(rmod, -mdl, -fit) %>% unnest()
# # A tibble: 22 x 4
#    country  year value  pred
#    <chr>   <dbl> <dbl> <dbl>
#  1 France  2001.   55.  38.1
#  2 France  2002.   53.  39.0
#  3 France  2003.   31.  39.9
#  4 France  2004.   10.  40.7
#  5 France  2005.   30.  41.6
#  6 France  2006.   37.  42.5
#  7 France  2007.   54.  43.3
#  8 France  2008.   58.  44.2
#  9 France  2009.   50.  45.0
# 10 France  2010.   40.  45.9
# # ... with 12 more rows

答案 1 :(得分:3)

我会使用data.table执行以下操作:

library(data.table)
setDT(df) # convert to data.table
df[ , value_hat := lm(value ~ year)$fitted.values, by = country]

如果你有NA,一个选项是:

df[complete.cases(df), value_hat := lm(value ~ year)$fitted.values, by = country]

另一个实际使用predict

df[ , value_hat := predict(lm(value ~ year), .SD), by = country]

答案 2 :(得分:0)

以下是使用broom包而不是modelr的替代方法。 augment将拟合值以及其他有用信息(例如残差)添加到原始观察值中。它旨在与符合do的分组模型的输出完美配合。见下文:

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(broom)

df <- tribble(
  ~year, ~country, ~value,
  2001, "France", 55, 
  2002, "France", 53, 
  2003, "France", 31, 
  2004, "France", 10, 
  2005, "France", 30, 
  2006, "France", 37, 
  2007, "France", 54, 
  2008, "France", 58, 
  2009, "France", 50, 
  2010, "France", 40, 
  2011, "France", 49, 
  2001, "USA", 55,
  2002, "USA", 53,
  2003, "USA", 64,
  2004, "USA", 40,
  2005, "USA", 30,
  2006, "USA", 39,
  2007, "USA", 55,
  2008, "USA", 53,
  2009, "USA", 71,
  2010, "USA", 44,
  2011, "USA", 40
)

rmod <- df %>% 
  group_by(country) %>% 
  do(fitModels = lm("value ~ year", data = .))

rmod %>% 
  augment(fitModels)
#> # A tibble: 22 x 10
#> # Groups:   country [2]
#>    country value  year .fitted .se.fit .resid   .hat .sigma .cooksd
#>    <chr>   <dbl> <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
#>  1 France    55. 2001.    38.1    8.49  16.9  0.318    14.2 0.430  
#>  2 France    53. 2002.    39.0    7.31  14.0  0.236    14.9 0.176  
#>  3 France    31. 2003.    39.9    6.25  -8.86 0.173    15.6 0.0438 
#>  4 France    10. 2004.    40.7    5.37 -30.7  0.127    10.9 0.349  
#>  5 France    30. 2005.    41.6    4.76 -11.6  0.1000   15.4 0.0366 
#>  6 France    37. 2006.    42.5    4.54  -5.45 0.0909   15.8 0.00723
#>  7 France    54. 2007.    43.3    4.76  10.7  0.100    15.5 0.0311 
#>  8 France    58. 2008.    44.2    5.37  13.8  0.127    15.1 0.0705 
#>  9 France    50. 2009.    45.0    6.25   4.95 0.173    15.8 0.0137 
#> 10 France    40. 2010.    45.9    7.31  -5.91 0.236    15.8 0.0313 
#> # ... with 12 more rows, and 1 more variable: .std.resid <dbl>

reprex package(v0.2.0)创建于2018-04-19。