我正在尝试在Eager Execution中使用TF运行自定义构建模型,但收到以下错误,我真的不知道如何解释:
sent=tf.convert_to_tensor(contexts_train[i], dtype=tf.float32)
quest=tf.convert_to_tensor(questions_train[i], dtype=tf.float32)
answer=tf.convert_to_tensor(answers_train[i], dtype=tf.float32)
我的输入是转换为张量的数组:
def grad(model, sent, quest, targets):
with tfe.GradientTape() as tape:
loss_value = loss(model, sent, quest, targets)
return tape.gradient(loss_value, model.variables)
def loss(model, sent, quest, y):
prediction = model.predict(sent, quest)
return tf.keras.losses.categorical_crossentropy(y, prediction)
这就是我定义我的毕业和失去函数的方式:
grads = grad(model, sent, quest, answer)
optimizer.apply_gradients(zip(grads, model.variables),
global_step=tf.train.get_or_create_global_step())
我如何称呼培训:
class Model(tf.keras.Model):
def __init__(self):
super(Model, self).__init__()
self.embed=tf.keras.layers.Embedding(42,50)
self.grucell=tf.keras.layers.GRUCell(50)
self.rnn=tf.keras.layers.RNN(self.grucell)
self.dense=tf.keras.layers.Dense(42,activation=tf.nn.softmax)
self.dropout=tf.keras.layers.Dropout(0.3)
def predict(self, sentence, question):
encoded_sentence=self.embed(sentence)
encoded_sentence=tf.keras.backend.expand_dims(encoded_sentence, axis=-1)
encoded_sentence=self.rnn(encoded_sentence)
encoded_sentence=self.dropout(encoded_sentence)
encoded_question=self.embed(question)
encoded_question=tf.keras.backend.expand_dims(encoded_question, axis=-1)
encoded_question=self.rnn(encoded_question)
encoded_question=self.dropout(encoded_question)
merged= tf.keras.layers.concatenate([encoded_sentence, encoded_question])
pred= self.dense(merged)
pred= tf.keras.backend.expand_dims(pred, axis=1)
return pred
为了完整起见,这里是模型:
Rng.Offset(0, xOffsetColumn).Value = UCase(Date)
获得一些帮助以了解后台发生的事情会很棒。
答案 0 :(得分:1)
您需要在tape.gradient
块的范围之外调用with
。特别是,将grad
功能更改为以下内容:
def grad(model, sent, quest, targets):
with tfe.GradientTape() as tape:
loss_value = loss(model, sent, quest, targets)
return tape.gradient(loss_value, model.variables)