我无法弄清楚xarray的一些基本使用模式。以下是我曾经能够在numpy中轻松完成的事情:(设置在另一个数组中满足特定条件的元素)
import numpy as np
q_index = np.array([
[0, 1, 2, 3, 4, 5],
[1, 5, 3, 2, 0, 4],
])
# any element not yet specified
q_kinds = np.full_like(q_index, 'other', dtype=object)
# any element with q-index 0 should be classified as 'gamma'
q_kinds[q_index == 0] = 'gamma'
# q_kinds is now:
# [['gamma' 'other' 'other' 'other' 'other' 'other']
# ['other' 'other' 'other' 'other' 'gamma' 'other']]
# afterwards I do some other things to fill in some (but not all)
# of the 'other' elements with different labels
但是我没有看到任何合理的方法在xarray
中执行此蒙面作业:
import xarray as xr
ds = xr.Dataset()
ds.coords['q-index'] = (['layer', 'q'], [
[0, 1, 2, 3, 4, 5],
[1, 5, 3, 2, 0, 4],
])
ds['q-kinds'] = xr.full_like(ds.coords['q-index'], 'other', dtype=object)
# any element with q-index == 0 should be classified as 'gamma'
# Attempt 1:
# 'IndexError: 2-dimensional boolean indexing is not supported.'
ds['q-kinds'][ds.coords['q-index'] == 0] = 'gamma'
# Attempt 2:
# Under 'More advanced indexing', the docs show that you can
# use isel with DataArrays to do pointwise indexing, but...
ds['q-kinds'].isel(
# ...I don't how to compute these index arrays from q-index...
layer = xr.DataArray([1, 0]),
q = xr.DataArray([5, 0]),
# ...and the docs also clearly state that isel does not support mutation.
)[...] = 'gamma' # FIXME ineffective
'gamma'
元素(同样是每个其他分类的数组)开始,使用不可变的API(以某种方式)合并/组合它们,做一些事情以确保数据沿q
维度密集,然后.fillna('other')
。或类似的东西。我真的不知道。
答案 0 :(得分:2)
你非常接近!您可以将xarray.where()
与三个参数一起使用,而不是布尔索引:
>>> xr.where(ds.coords['q-index'] == 0, 'gamma', ds['q-kinds'])
<xarray.DataArray (layer: 2, q: 6)>
array([['gamma', 'other', 'other', 'other', 'other', 'other'],
['other', 'other', 'other', 'other', 'gamma', 'gamma']], dtype=object)
Coordinates:
q-index (layer, q) int64 0 1 2 3 4 5 1 5 3 2 0 4
Dimensions without coordinates: layer, q
或者等效地,您可以在.isel()
内使用字典,而不是使用[]
进行分配,例如,
>>> indexer = dict(layer=xr.DataArray([1, 0]), q=xr.DataArray([5, 0]))
>>> ds['q-kinds'][indexer] = 'gamma'
请注意,在字典中显式创建DataArray对象非常重要,因为它们是使用相同的新维度名称dim_0
创建的:
>>> indexer
{'layer': <xarray.DataArray (dim_0: 2)>
array([1, 0])
Dimensions without coordinates: dim_0, 'q': <xarray.DataArray (dim_0: 2)>
array([5, 0])
Dimensions without coordinates: dim_0}
如果直接传递列表或1D numpy数组,则假定它们沿着独立的维度,因此最终会得到&#34;外部&#34;样式索引:
>>> indexer = dict(layer=[1, 0], q=[5, 0])
>>> ds['q-kinds'][indexer] = 'gamma'
>>> ds['q-kinds']
<xarray.DataArray 'q-kinds' (layer: 2, q: 6)>
array([['gamma', 'other', 'other', 'other', 'other', 'gamma'],
['gamma', 'other', 'other', 'other', 'other', 'gamma']], dtype=object)
Coordinates:
q-index (layer, q) int64 0 1 2 3 4 5 1 5 3 2 0 4
Dimensions without coordinates: layer, q