我的价值有所不同,但我无法使用diffinv()
来区分它 ds_sqrt=np.sqrt(ds)
ds_sqrt=pd.DataFrame(ds_sqrt)
ds_diff=ds_sqrt.diff().values
任何人都可以说如何解开这个?
答案 0 :(得分:2)
您可以使用pmdarima中的diff_inv。Docs link
# genarating random table
np.random.seed(10)
vals = np.random.randint(1, 10, 6)
df_t = pd.DataFrame({"a":vals})
#creating two columns with diff 1 and diff 2
df_t['dif_1'] = df_t.a.diff(1)
df_t['dif_2'] = df_t.a.diff(2)
df_t
a dif_1 dif_2
0 5 NaN NaN
1 1 -4.0 NaN
2 2 1.0 -3.0
3 1 -1.0 0.0
4 2 1.0 0.0
5 9 7.0 8.0
然后创建一个函数,该函数将返回具有diff的反值的数组。
from pmdarima.utils import diff_inv
def inv_diff (df_orig_column,df_diff_column, periods):
# Generate np.array for the diff_inv function - it includes first n values(n =
# periods) of original data & further diff values of given periods
value = np.array(df_orig_column[:periods].tolist()+df_diff_column[periods:].tolist())
# Generate np.array with inverse diff
inv_diff_vals = diff_inv(value, periods,1 )[periods:]
return inv_diff_vals
使用示例:
# df_orig_column - column with original values
# df_diff_column - column with differentiated values
# periods - preiods for pd.diff()
inv_diff(df_t.a, df_t.dif_2, 2)
输出:
array([5., 1., 2., 1., 2., 9.])
答案 1 :(得分:1)
您可以通过numpy
执行此操作。算法courtesy of @Divakar。
当然,您需要了解系列中的第一项才能实现此目的。
df = pd.DataFrame({'A': np.random.randint(0, 10, 10)})
df['B'] = df['A'].diff()
x, x_diff = df['A'].iloc[0], df['B'].iloc[1:]
df['C'] = np.r_[x, x_diff].cumsum().astype(int)
# A B C
# 0 8 NaN 8
# 1 5 -3.0 5
# 2 4 -1.0 4
# 3 3 -1.0 3
# 4 9 6.0 9
# 5 7 -2.0 7
# 6 4 -3.0 4
# 7 0 -4.0 0
# 8 8 8.0 8
# 9 1 -7.0 1
答案 2 :(得分:0)
这是一个工作示例。
首先,让我们导入需要的包
import numpy as np
import pandas as pd
import pmdarima as pm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
然后,让我们创建一个简单的离散余弦波
period = 5
cycles = 7
x = np.cos(np.linspace(0, 2*np.pi*cycles, periods*cycles+1))
X = pd.DataFrame(x)
和情节
fig, ax = plt.subplots(figsize=(12, 5))
ax.plot(X, marker='.')
ax.set(
xticks=X.index
)
ax.axvline(0, color='r', ls='--')
ax.axvline(period, color='r', ls='--')
ax.set(
title='Original data'
)
plt.show()
请注意,句点是 5
。现在让我们通过对周期 5 进行微分来消除这种“季节性”
X_diff = X.diff(periods=period)
# NOTE: the first `period` observations
# are needed for back transformation
X_diff.iloc[:period] = X[:period]
请注意,我们必须保留第一个 period
观察值以允许反向转换。如果您不需要它们,则必须将它们保留在其他地方,然后在您想要反向转换时进行连接。
fig, ax = plt.subplots(figsize=(12, 5))
ax.axvline(0, color='r', ls='--')
ax.axvline(period-1, color='r', ls='--')
ax.plot(X_diff, marker='.')
ax.annotate(
'Keep these original data\nto allow back transformation',
xy=(period-1, .5), xytext=(10, .5),
arrowprops=dict(color='k')
)
ax.set(
title='Transformed data'
)
plt.show()
现在让我们用 pmdarima.utils.diff_inv
X_diff_inv = pm.utils.diff_inv(X_diff, lag=period)[period:]
请注意,我们丢弃了第一个 period
结果,这些结果是 0
并且不需要。
fig, ax = plt.subplots(figsize=(12, 5))
ax.axvline(0, color='r', ls='--')
ax.axvline(period-1, color='r', ls='--')
ax.plot(X_diff_inv, marker='.')
ax.set(
title='Back transformed data'
)
plt.show()
答案 3 :(得分:0)
与pandas在一行中反向差异
import pandas as pd
df = pd.DataFrame([10, 15, 14, 18], columns = ['Age'])
df['Age_diff'] = df.Age.diff()
df['reverse_diff'] = df['Age'].shift(1) + df['Age_diff']
print(df)
Age Age_diff reverse_diff
0 10 NaN NaN
1 15 5.0 15.0
2 14 -1.0 14.0
3 18 4.0 18.0
答案 4 :(得分:-3)
df.cumsum()
Example:
data = {'a':[1,6,3,9,5], 'b':[13,1,2,5,23]}
df = pd.DataFrame(data)
df =
a b
0 1 13
1 6 1
2 3 2
3 9 5
4 5 23
df.diff()
a b
0 NaN NaN
1 5.0 -12.0
2 -3.0 1.0
3 6.0 3.0
4 -4.0 18.0
df.cumsum()
a b
0 1 13
1 7 14
2 10 16
3 19 21
4 24 44