我想沿多维矩阵的任意轴执行和减少,该多维矩阵可以具有任意尺寸(例如10维阵列的轴5)。矩阵使用行主格式存储,即与vector
一起沿着每个轴的步幅存储。
我知道如何使用嵌套循环执行此缩减(请参见下面的示例),但这样做会导致硬编码轴(缩减沿着下面的轴1)和任意数量的维度(下面的4)。 如何在不使用嵌套循环的情况下概括它?
#include <iostream>
#include <vector>
int main()
{
// shape, stride & data of the matrix
size_t shape [] = { 2, 3, 4, 5};
size_t strides[] = {60,20, 5, 1};
std::vector<double> data(2*3*4*5);
for ( size_t i = 0 ; i < data.size() ; ++i ) data[i] = 1.;
// shape, stride & data (zero-initialized) of the reduced matrix
size_t rshape [] = { 2, 4, 5};
size_t rstrides[] = {20, 5, 1};
std::vector<double> rdata(2*4*5, 0.0);
// compute reduction
for ( size_t a = 0 ; a < shape[0] ; ++a )
for ( size_t c = 0 ; c < shape[2] ; ++c )
for ( size_t d = 0 ; d < shape[3] ; ++d )
for ( size_t b = 0 ; b < shape[1] ; ++b )
rdata[ a*rstrides[0] + c*rstrides[1] + d*rstrides[2] ] += \
data [ a*strides [0] + b*strides [1] + c*strides [2] + d*strides [3] ];
// print resulting reduced matrix
for ( size_t a = 0 ; a < rshape[0] ; ++a )
for ( size_t b = 0 ; b < rshape[1] ; ++b )
for ( size_t c = 0 ; c < rshape[2] ; ++c )
std::cout << "(" << a << "," << b << "," << c << ") " << \
rdata[ a*rstrides[0] + b*rstrides[1] + c*rstrides[2] ] << std::endl;
return 0;
}
注意:我想避免'解压缩'和'压缩'计数器。我的意思是,我可以用伪代码做:
for ( size_t i = 0 ; i < data.size() ; ++i )
{
i -> {a,b,c,d}
discard "b" (axis 1) -> {a,c,d}
rdata(a,c,d) += data(a,b,c,d)
}
答案 0 :(得分:3)
我不知道这段代码的效率如何,但在我看来,它肯定是准确的。
adjusted_strides
上的一点点:
对于axis_count = 4
,adjusted_strides
的大小为5
,其中:
adjusted_strides[0] = shape[0]*shape[1]*shape[2]*shape[3];
adjusted_strides[1] = shape[1]*shape[2]*shape[3];
adjusted_strides[2] = shape[2]*shape[3];
adjusted_strides[3] = shape[3];
adjusted_strides[4] = 1;
我们以维数为4
且多维数组(A
)的形状为n0, n1, n2, n3
为例。
当我们需要将此数组转换为另一个形状为B
(压缩n0, n2, n3
)的多维数组(axis = 1 (0-based)
)时,我们尝试按以下步骤进行:
对于A
的每个索引,我们会尝试在B
中找到它的位置。
让A[i][j][k][l]
成为A
中的任何元素。它在flat_A
中的位置将为A[i*n1*n2*n3 + j*n2*n3 + k*n3 + l]
<强> idx = i*n1*n2*n3 + j*n2*n3 + k*n3 + l;
强>
在压缩数组B
中,此元素将成为B[i][k][l]
的一部分(或添加到其中)flat_B
。在new_idx = i*n2*n3 + k*n3 + l;
中,索引为 new_idx
。
我们如何从idx
形成1
?
压缩轴之前的所有轴都具有压缩轴的形状作为其产品的一部分。在我们的示例中,我们必须删除轴0th axis
,因此i
表示的所有轴在第1轴之前(此处只有一个:n1
)具有{{1} }作为产品的一部分(i*n1*n2*n3
)。
压缩轴后的所有轴都不受影响。
最后,我们需要做两件事:
在要压缩的轴的索引之前隔离轴的索引,并删除该轴的形状:
整数除法:idx / (n1*n2*n3);
(== idx / adjusted_strides[1]
)。
我们只剩i
,可以根据新形状重新调整(乘以n2*n3
):我们得到
i*n2*n3
(== i * adjusted_strides[2]
)。
我们在压缩轴之后隔离轴,这些轴不受其形状的影响。
idx % (n2*n3)
(== idx % adjusted_strides[2]
)
给了我们k*n3 + l
。
添加步骤 i。和 ii。的结果会导致:
computed_idx = i*n2*n3 + k*n3 + l;
与new_idx
相同。所以,我们的转变是正确的:)。
注意:ni
是指new_idx
。
size_t cmp_axis = 1, axis_count = sizeof shape/ sizeof *shape;
std::vector<size_t> adjusted_strides;
//adjusted strides is basically same as strides
//only difference being that the first element is the
//total number of elements in the n dim array.
//The only reason to introduce this array was
//so that I don't have to write any if-elses
adjusted_strides.push_back(shape[0]*strides[0]);
adjusted_strides.insert(adjusted_strides.end(), strides, strides + axis_count);
for(size_t i = 0; i < data.size(); ++i) {
size_t ni = i/adjusted_strides[cmp_axis]*adjusted_strides[cmp_axis+1] + i%adjusted_strides[cmp_axis+1];
rdata[ni] += data[i];
}
(0,0,0) 3
(0,0,1) 3
(0,0,2) 3
(0,0,3) 3
(0,0,4) 3
(0,1,0) 3
(0,1,1) 3
(0,1,2) 3
(0,1,3) 3
(0,1,4) 3
(0,2,0) 3
(0,2,1) 3
(0,2,2) 3
(0,2,3) 3
(0,2,4) 3
(0,3,0) 3
(0,3,1) 3
(0,3,2) 3
...
经过测试here。
如需进一步阅读,请参阅this。
答案 1 :(得分:1)
我认为这应该有效:
#include <iostream>
#include <vector>
int main()
{
// shape, stride & data of the matrix
size_t shape [] = { 2, 3, 4, 5};
size_t strides[] = {60, 20, 5, 1};
std::vector<double> data(2 * 3 * 4 * 5);
size_t rshape [] = { 2, 4, 5};
size_t rstrides[] = {3, 5, 1};
std::vector<double> rdata(2 * 4 * 5, 0.0);
const unsigned int NDIM = 4;
unsigned int axis = 1;
for (size_t i = 0 ; i < data.size() ; ++i) data[i] = 1;
// How many elements to advance after each reduction
size_t step_axis = strides[NDIM - 1];
if (axis == NDIM - 1)
{
step_axis = strides[NDIM - 2];
}
// Position of the first element of the current reduction
size_t offset_base = 0;
size_t offset = 0;
size_t s = 0;
for (auto &v : rdata)
{
// Current reduced element
size_t offset_i = offset;
for (unsigned int i = 0; i < shape[axis]; i++)
{
// Reduce
v += *(data.data() + offset_i);
// Advance to next element
offset_i += strides[axis];
}
s = (s + 1) % strides[axis];
if (s == 0)
{
offset_base += strides[axis - 1];
offset = offset_base;
}
else
{
offset += step_axis;
}
}
// Print
for ( size_t a = 0 ; a < rshape[0] ; ++a )
for ( size_t b = 0 ; b < rshape[1] ; ++b )
for ( size_t c = 0 ; c < rshape[2] ; ++c )
std::cout << "(" << a << "," << b << "," << c << ") " << \
rdata[ a*rstrides[0] + b*rstrides[1] + c*rstrides[2] ] << std::endl;
return 0;
}
输出:
(0,0,0) 3
(0,0,1) 3
(0,0,2) 3
(0,0,3) 3
(0,0,4) 3
(0,1,0) 3
(0,1,1) 3
(0,1,2) 3
(0,1,3) 3
(0,1,4) 3
(0,2,0) 3
(0,2,1) 3
(0,2,2) 3
// ...
设置axis = 3
会产生:
(0,0,0) 5
(0,0,1) 5
(0,0,2) 5
(0,0,3) 5
(0,0,4) 5
(0,1,0) 5
(0,1,1) 5
(0,1,2) 5
(0,1,3) 5
(0,1,4) 5
(0,2,0) 5
(0,2,1) 5
(0,2,2) 5
(0,2,3) 5
// ...