我在我的数据集中使用了LightFM推荐程序库,它会在下面的图片中显示结果。
NUM_THREADS = 4
NUM_COMPONENTS = 30
NUM_EPOCHS = 5
ITEM_ALPHA = 1e-6
LEARNING_RATE = 0.005
LEARNING_SCHEDULE = 'adagrad'
RANDOM_SEED = 29031994
warp_model = LightFM(loss='warp',
learning_rate=LEARNING_RATE,
learning_schedule=LEARNING_SCHEDULE,
item_alpha=ITEM_ALPHA,
no_components=NUM_COMPONENTS,
random_state=RANDOM_SEED)
bpr_model = LightFM(loss='bpr',
learning_rate=LEARNING_RATE,
learning_schedule=LEARNING_SCHEDULE,
item_alpha=ITEM_ALPHA,
no_components=NUM_COMPONENTS,
random_state=RANDOM_SEED)
我的功能形状如下:
如何优化我的超参数以改善曲线下面积(AUC)分数?
答案 0 :(得分:4)
您可以在sklearn docs中找到有关超参数优化的良好一般指南。
您可以应用于优化LightFM模型的一种简单但有效的技术是random search。粗略地说,它包括以下步骤:
['warp', 'bpr', 'warp-kos']
。要衡量最终模型的性能,您应该使用测试集:只需评估测试集上的最佳验证模型。
以下脚本说明了这一点:
import itertools
import numpy as np
from lightfm import LightFM
from lightfm.evaluation import auc_score
def sample_hyperparameters():
"""
Yield possible hyperparameter choices.
"""
while True:
yield {
"no_components": np.random.randint(16, 64),
"learning_schedule": np.random.choice(["adagrad", "adadelta"]),
"loss": np.random.choice(["bpr", "warp", "warp-kos"]),
"learning_rate": np.random.exponential(0.05),
"item_alpha": np.random.exponential(1e-8),
"user_alpha": np.random.exponential(1e-8),
"max_sampled": np.random.randint(5, 15),
"num_epochs": np.random.randint(5, 50),
}
def random_search(train, test, num_samples=10, num_threads=1):
"""
Sample random hyperparameters, fit a LightFM model, and evaluate it
on the test set.
Parameters
----------
train: np.float32 coo_matrix of shape [n_users, n_items]
Training data.
test: np.float32 coo_matrix of shape [n_users, n_items]
Test data.
num_samples: int, optional
Number of hyperparameter choices to evaluate.
Returns
-------
generator of (auc_score, hyperparameter dict, fitted model)
"""
for hyperparams in itertools.islice(sample_hyperparameters(), num_samples):
num_epochs = hyperparams.pop("num_epochs")
model = LightFM(**hyperparams)
model.fit(train, epochs=num_epochs, num_threads=num_threads)
score = auc_score(model, test, train_interactions=train, num_threads=num_threads).mean()
hyperparams["num_epochs"] = num_epochs
yield (score, hyperparams, model)
if __name__ == "__main__":
from lightfm.datasets import fetch_movielens
data = fetch_movielens()
train = data["train"]
test = data["test"]
(score, hyperparams, model) = max(random_search(train, test, num_threads=2), key=lambda x: x[0])
print("Best score {} at {}".format(score, hyperparams))