我正在尝试遍历数据框的列名,并评估每列的哪个类。
for (i in columns(df)){
class(df$i)
}
除了正确的方法,我已经尝试了一切......
PS:我试图以这种方式做,因为我必须为每个班级设置不同的条件。
答案 0 :(得分:8)
要回答确切的问题并修复给定的代码,请参阅下面的示例
df <- iris # data
for (i in colnames(df)){
print(class(df[[i]]))
}
# [1] "numeric"
# [1] "numeric"
# [1] "numeric"
# [1] "numeric"
# [1] "factor"
colnames
来获取df
的列名。 df[[i]]
访问每列。 df[i]
属于data.frame
类。 答案 1 :(得分:0)
问题是要遍历数据框的各列,还提出了有关遍历数据框的某些子集的另一个问题。我使用了mtcars数据集,因为它具有比虹膜数据集更多的数据列。这提供了更丰富的示例。要遍历某些列子集,请在for循环中使用数字值,而不要使用列名。如果感兴趣的列是规则间隔的,则用感兴趣的列作一个向量。示例如下:
#Similar to previous answer only with mtcars rather than iris data.
df2<-mtcars
for (i in colnames(df2)){print(paste(i," ",class(df2[[i]])))}
#An alternative that is as simple but does not also print the variable names.
df2<-mtcars
for (i in 1:ncol(df2)){print(paste(i," ",class(df2[[i]])))}
#With variable names:
df2<-mtcars
for (i in 1:ncol(df2)){print(paste(i," ",colnames(df2[i])," ",class(df2[[i]])))}
#Now that we are looping numerically one can start in column 3 by:
df2<-mtcars
for (i in 3:ncol(df2)){print(paste(i," ",colnames(df2[i])," ",class(df2[[i]])))}
#To stop before the last column add a break statement inside an if
df2<-mtcars
for (i in 3:ncol(df2)){
if(i>7){break}
print(paste(i," ",colnames(df2[i])," ",class(df2[[i]])))}
#Finally, if you know the columns and they are irregularly spaced try this:
UseCols<-c(2,4,7,9,10)
for (i in UseCols){print(paste(i," ",colnames(df2[i])," ",class(df2[[i]])))}