是否可以使用像素而不是gpplot2中的轴值来调整数据点和数据标签之间的距离?

时间:2018-04-16 15:28:23

标签: r ggplot2 shiny

下面你好我提供了一个scater图,你可以看到每个数据点的汽车类型。这个图是静态的,所以nudge_x=0.05非常适合。在我的情况下,绘图被更新,因此轴范围可以是0到10到0到10000.在这种情况下,0.05距离似乎没用,因为与10000相比,它是非常小的值,数据标签显示在数据点上。我想知道如果不是0.05,我可以设置像素或其他东西的距离,以保持数据点和数据标签之间的距离不受轴值的影响。

    p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars)))
    p + geom_point() + geom_text(hjust = 0, nudge_x = 0.05)

我的实际代码:

#ui.r
library(shiny)
library(ggplot2)
library(plotly)
fluidPage(

  # App title ----
  titlePanel(div("CROSS CORRELATION",style = "color:blue")),

  # Sidebar layout with input and output definitions ----
  sidebarLayout(

    # Sidebar panel for inputs ----
    sidebarPanel(

      # Input: Select a file ----
      fileInput("file1", "Input CSV-File",
                multiple = TRUE,
                accept = c("text/csv",
                           "text/comma-separated-values,text/plain",
                           ".csv")),

      # Horizontal line ----
      tags$hr(),

      # Input: Checkbox if file has header ----
      checkboxInput("header", "Header", TRUE),

      # Input: Select separator ----
      radioButtons("sep", "Separator",
                   choices = c(Comma = ",",
                               Semicolon = ";",
                               Tab = "\t"),
                   selected = ","),


      # Horizontal line ----
      tags$hr(),

      # Input: Select number of rows to display ----
      radioButtons("disp", "Display",
                   choices = c(Head = "head",
                               All = "all"),
                   selected = "head")





    ),
    # Main panel for displaying outputs ----
    mainPanel(

      tabsetPanel(type = "tabs",
                  tabPanel("Table",
                           shiny::dataTableOutput("contents")),
                  tabPanel("Correlation Plot",
                           tags$style(type="text/css", "
           #loadmessage {
                                      position: fixed;
                                      top: 0px;
                                      left: 0px;
                                      width: 100%;
                                      padding: 5px 0px 5px 0px;
                                      text-align: center;
                                      font-weight: bold;
                                      font-size: 100%;
                                      color: #000000;
                                      background-color: #CCFF66;
                                      z-index: 105;
                                      }
                                      "),conditionalPanel(condition="$('html').hasClass('shiny-busy')",
                                                          tags$div("Loading...",id="loadmessage")
                                      ),
                           fluidRow(
                             column(3, uiOutput("lx1")),
                           column(3,uiOutput("lx2"))),
                           hr(),
                           fluidRow(
                             tags$style(type="text/css",
                                        ".shiny-output-error { visibility: hidden; }",
                                        ".shiny-output-error:before { visibility: hidden; }"
                             ),
                           column(3,uiOutput("td")),
                           column(3,uiOutput("an"))),
                           fluidRow(
                           plotlyOutput("sc"))
      ))
  )))
#server.r
function(input, output) {


  output$contents <- shiny::renderDataTable({

    iris
  })


  output$lx1<-renderUI({
    selectInput("lx1", label = h4("Select 1st Expression Profile"), 
                choices = colnames(iris[,1:4]), 
                selected = "Lex1")
  })
  output$lx2<-renderUI({
    selectInput("lx2", label = h4("Select 2nd Expression Profile"), 
                choices = colnames(iris[,1:4]), 
                selected = "Lex2")
  })

  output$td<-renderUI({
    radioButtons("td", label = h4("Trendline"),
                 choices = list("Add Trendline" = "lm", "Remove Trendline" = ""), 
                 selected = "")
  })

  output$an<-renderUI({

    radioButtons("an", label = h4("Correlation Coefficient"),
                 choices = list("Add Cor.Coef" = cor(subset(iris, select=c(input$lx1)),subset(iris, select=c(input$lx2))), "Remove Cor.Coef" = ""), 
                 selected = "")
  })  


 output$sc<-renderPlotly({

   p1 <- ggplot(iris, aes_string(x = input$lx1, y = input$lx2))+

     # Change the point options in geom_point
     geom_point(color = "darkblue") +
     # Change the title of the plot (can change axis titles
     # in this option as well and add subtitle)
     labs(title = "Cross Correlation") +
     # Change where the tick marks are
     scale_x_continuous(breaks = seq(0, 2.5, 30)) +
     scale_y_continuous(breaks = seq(0, 2.5, 30)) +
     # Change how the text looks for each element
     theme(title = element_text(family = "Calibri", 
                                size = 10, 
                                face = "bold"), 
           axis.title = element_text(family = "Calibri Light", 
                                     size = 16, 
                                     face = "bold", 
                                     color = "darkgrey"), 
           axis.text = element_text(family = "Calibri", 
                                    size = 11))+
     theme_bw()+
     geom_smooth(method = input$td)+
     annotate("text", x = 10, y = 10, label = as.character(input$an))
   ggplotly(p1) %>%
     layout(hoverlabel = list(bgcolor = "white", 
                              font = list(family = "Calibri", 
                                          size = 9, 
                                          color = "black")))

 }) 




}

1 个答案:

答案 0 :(得分:1)

您可以使用hjust代替nudge_xnudge_x在绘图单元中的作用,hjust用于通过调整文本的开始位置来水平对齐文本。值为0左对齐,0.5为居中,值为1为右对齐:

       Point where text starts:
       |
       |Hjust 0
Hjust 1|

您可以使用任何值。对于左对齐,负值会将起始字母甚至更远移动到右侧而不是值0,并且此调整基于文本的长度,而不是基于绘图坐标。

这有点奇怪,因为较长的琴弦会移动更多,但作为一个简单的黑客,它的效果非常好。除非你的弦长非常不同,否则这不重要。你可以在这个例子中看一下比较&#34;菲亚特128&#34;到丰田卡罗拉&#34;。

即使hjustwt相差大约100倍,也会看到相同hp值的类似结果:

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars)))
p + geom_point() + geom_text(hjust = -.05)

q <- ggplot(mtcars, aes(hp, mpg, label = rownames(mtcars)))
q + geom_point() + geom_text(hjust = -.05)