我在Python中有一个DataFrame,如下所示。这是一个列(在下面称为' json'),其中包含一个大的嵌套JSON字符串。我怎样才能解析它,这样我就可以拥有一个包含许多列的干净数据框。特别需要单独列中每个ID的成本和每月金额。理想情况下,我有一张表格如下:
ID,名称,费用,每月
10001,frank,15.85,15.85
10002,mary,30.86,23.03
d = {'id': ['10001', '10002'], 'json': ['{"costs":[{"cost":15.85}],"policies":[{"logo":"HLIF-transparent-inhouse.png","monthly":15.85,"rating":"A++","waiverOfPremium":1.74,"carrier":"companyabc","face":250000,"term":20,"newFace":null,"newMonthly":null,"isCompanyD":true,"carrierCode":"xyz","product":"XYZt"}],"agentSuggestion":{"costs":[{"cost":15.85}],"options":{"product":"XYZt","gender":"male","healthClass":"0","smoker":"false","age":32,"term":"20","faceAmount":250000,"waiverOfPremiumAmount":1.74,"includeWaiverOfPremium":false,"state":"CT"},"policies":[{"logo":"HLIF-transparent-inhouse.png","monthly":15.85,"rating":"A++","waiverOfPremium":1.74,"carrier":"companyabc","face":250000,"term":20,"newFace":null,"newMonthly":null,"isCompanyD":true,"carrierCode":"xyz","product":"XYZt"}]}}', '{"costs":[{"cost":30.86}],"policies":[{"logo":"HLIF-transparent-inhouse.png","monthly":23.03,"rating":"A++","waiverOfPremium":7.83,"carrier":"companyabc","face":1000000,"term":10,"newFace":null,"newMonthly":null,"isCompanyD":true,"carrierCode":"xyz","product":"XYZt"}],"agentSuggestion":{"costs":[{"cost":30.86}],"options":{"product":"XYZt","gender":"female","healthClass":"0","smoker":"false","age":35,"term":10,"faceAmount":1000000,"waiverOfPremiumAmount":7.83,"includeWaiverOfPremium":true,"state":"GA"},"policies":[{"logo":"HLIF-transparent-inhouse.png","monthly":23.03,"rating":"A++","waiverOfPremium":7.83,"carrier":"companyabc","face":1000000,"term":10,"newFace":null,"newMonthly":null,"isCompanyD":true,"carrierCode":"xyz","product":"XYZt"}]}}'], 'name':['frank','mary']}
test = pd.DataFrame(data=d)
答案 0 :(得分:2)
你去吧。您的JSON有两种不同的成本(成本和agentSuggestion成本),因此两者都添加在此处:
import json
test = pd.DataFrame(d, columns = ['id', 'json', 'name'])
test['cost'] = test['json'].transform(lambda x: json.loads(x)['costs'][0]['cost'])
test['agent_suggestion_cost'] = test['json']\
.transform(lambda x: json.loads(x)['agentSuggestion']["costs"][0]['cost'])
print(test)
您可以按照类似的逻辑来解析其他字段,例如每月。有关更多参考,请参阅例如here查看JSON预处理器(例如JSTool和Notepad ++)以查看JSON的结构,这将有助于理解其结构。
如果你发现它有用,请接受答案。
答案 1 :(得分:0)
Pandas提供了几个用于处理json文件的实用程序。 对你的案件有意义的是 pd.read_json和 pd.io.json_normalize。但是,他们希望以不同的json格式输入。
orient : string,
Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:
'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
'records' : list like [{column -> value}, ... , {column -> value}]
'index' : dict like {index -> {column -> value}}
'columns' : dict like {column -> {index -> value}}
'values' : just the values array
The allowed and default values depend on the value of the typ parameter.
when typ == 'series',
allowed orients are {'split','records','index'}
default is 'index'
The Series index must be unique for orient 'index'.
when typ == 'frame',
allowed orients are {'split','records','index', 'columns','values'}
default is 'columns'
The DataFrame index must be unique for orients 'index' and 'columns'.
The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.