是否有解决方法来获得googlemaps未涵盖的点(long-lat)之间的旅行时间(使用gmapsdistance)?

时间:2018-04-16 09:55:57

标签: r google-maps google-maps-api-3 coordinates distance

我需要计算光栅质心(长距离坐标)和参考点之间的行程时间(例如乘车)。然而,不幸的是,许多光栅质心不在googlemaps的覆盖范围内,我想知道是否有一种解决方法可以让我以最快的方式到达参考点(例如通过组合步行到街道然后开车到参考点),如果是这样,我怎么做到这一点?

问题在于,当我只是寻找下一个定位点时,我得到一个偏差,将该点的距离作为步行距离,然后googlemaps从那里开始到参考点,因为最近的点可能不是一个在最快的路线上..

我试图使用gmapsdistance-function来做到这一点。这是一个例子:

library(gmapsdistance)

#While this can be located and works well

> gmapsdistance(origin = "5.600451+-0.202553",
+               destination = "5.591622+-0.187677",
+               mode = "walking")
$Time
[1] 2101

$Distance
[1] 2667

$Status
[1] "OK"

#Changing the origin to other points often does not work as the points cannot be located and results in an NA-output

> gmapsdistance(origin = "7.9254948+-0.6283887",
+               destination = "5.591622+-0.187677",
+               mode = "walking")
$Time
[1] NA

$Distance
[1] NA

$Status
[1] "ROUTE_NOT_FOUND"

非常感谢!

1 个答案:

答案 0 :(得分:2)

我能想到解决这个问题的一种方法是获取加纳道路的形状文件并执行地理空间操作以找到最近的道路。从那里你应该能够使用谷歌的API来获得dirving距离

此解决方案中的步骤是

  1. 下载道路形状文件
  2. 直接找到'我们的出发地和目的地之间的界线
  3. 查找与此直线相交的所有道路
  4. 在Google方向查询
  5. 中使用最近的十字路口作为新原点

    在此示例中,我使用的shapefile来自here

    library(sf)        ## geospatial operations
    library(googleway) ## plotting and google API
    

    注意:

    googleway是我的软件包,您需要使用Google API密钥才能使用它

    ## Setting API keys I'll be using, one for the maps and one for directions
    set_key("my_map_key"), api = "map")
    set_key("my_other_api_key")
    
    ## Ghana roads
    ghanaRoads <- sf::st_read("~/Downloads/gha_roads_dcw/GHA_rds_1m_dcw.shp")
    
    ## origin piont
    df <- data.frame(lat = 7.9254948, lon = -0.6283887)
    
    ## destination point
    dest <- data.frame(lat = 5.591622, lon = -0.187677)
    
    
    google_map() %>%
        add_markers(data = df) %>%
        add_markers(data = dest) %>%
        add_polylines(ghanaRoads)
    

    enter image description here

    您在这里使用的确切方法可能会有所不同。但是在这个例子中,我使用两个坐标之间的线来给出我们对行进方向的合理猜测,因此我们应该在起点的位置。

    ## convert origin into an 'sf' object
    sf_origin <- sf::st_sf(geometry = sf::st_sfc(sf::st_point(x = c(-0.6283887, 7.9254948))))
    
    ## create a line between the origin and destination
    m <- matrix(c(-0.6283887, 7.9254948, -0.187677, 5.591622), ncol = 2, byrow = T)
    sf_line <- sf::st_sf(geometry = sf::st_sfc(sf::st_linestring(x = m)))
    
    ## The coordinate reference system needs to match between the two for 
    ## spatial operations
    sf::st_crs(sf_line) <- sf::st_crs(ghanaRoads)
    sf::st_crs(sf_origin) <- sf::st_crs(ghanaRoads)
    
    ## find all the intersecting points
    sf_intersections <- sf::st_intersection(ghanaRoads, sf_line)
    
    google_map() %>%
        add_markers(data = df) %>%
        add_markers(data = dest) %>%
        add_polylines(data = ghanaRoads) %>%
        add_markers(data = sf_intersections)
    

    enter image description here

    我们可以使用距我们原点最近的交叉点作为我们的路线查询的起点。

    请注意

    sf找到最近的方法是使用sf::st_distance,但这取决于您系统上安装的lwgeom,但我有安装它的问题,所以我不得不使用不同的方法

    我使用data.table函数编写了for this answer来计算从每个点到原点的半径距离。然后我选择距离最小的那个。

    library(data.table)
    
    coords <- matrix(unlist(sf_intersections$geometry), ncol = 2, byrow = T)
    
    ## Taking a fucntion I wrote for this answer
    ## https://stackoverflow.com/a/42014364/5977215
    dt.haversine <- function(lat_from, lon_from, lat_to, lon_to, r = 6378137){
        radians <- pi/180
        lat_to <- lat_to * radians
        lat_from <- lat_from * radians
        lon_to <- lon_to * radians
        lon_from <- lon_from * radians
        dLat <- (lat_to - lat_from)
        dLon <- (lon_to - lon_from)
        a <- (sin(dLat/2)^2) + (cos(lat_from) * cos(lat_to)) * (sin(dLon/2)^2)
        return(2 * atan2(sqrt(a), sqrt(1 - a)) * r)
    }
    
    dt <- as.data.table(coords)
    dt[, `:=`(origin_lon = df$lon, origin_lat = df$lat)]
    dt[, distance := dt.haversine(origin_lat, origin_lon, V1, V2)]
    ## min distance
    sf_nearest <- dt[order(-distance)][1, .(lon = V1, lat = V2)]
    sf_nearest <- sf::st_point(c(sf_nearest$lon, sf_nearest$lat))
    sf_nearest <- sf::st_sf(geometry = sf::st_sfc(sf_nearest))
    sf_nearest$colour <- "green"
    
    google_map() %>%
        add_markers(data = df) %>%
        add_markers(data = dest) %>%
        add_markers(data = sf_nearest, colour = "colour")
    

    enter image description here

    我们可以在路线查询中使用此绿色标记

    orig <- sf_nearest$geometry[[1]]
    orig <- as.numeric(orig)
    df_orig <- data.frame(lat = orig[2], lon = orig[1])
    
    google_map() %>%
        add_markers(df_orig)
    
    res <- google_directions(origin = df_orig, 
                destination = dest)
    
    ## all the api results are now stored in the 'res' object.
    direction_legs(res)$distance
    # text  value
    # 1 397 km 396829
    
    ## you can look at the route through the polygoin
    df_route <- data.frame(polyline = direction_polyline(res))
    
    google_map() %>%
        add_markers(data = df_orig) %>%
        add_markers(data = dest) %>%
        add_polylines(data = df_route, polyline = "polyline")
    

    enter image description here

    dt[order(-distance)]给出了从原点到新原点的距离,

    dt[order(-distance)][1, distance]
    # [1] 1329904
    

    这是米。假设平均步行速度为4kph,您可以将其添加到总时间

    替代方法

    正如评论中所要求的,找到最近的道路的另一种方法是在原点周围画一个缓冲区并找到任何相交的道路

    sf_buffer <- sf::st_buffer(sf_origin, dist = 0.5)
    sf::st_crs(sf_buffer) <- sf::st_crs(ghanaRoads)
    
    google_map() %>%
      add_polylines(ghanaRoads) %>%
      add_polygons(sf_buffer)
    

    enter image description here

    然后,您可以找到与此缓冲区相交的所有线

    sf_intersection <- sf::st_intersection(sf_buffer, ghanaRoads)
    
    google_map() %>%
      add_markers(data = df) %>%
      add_polylines(sf_intersection)
    

    enter image description here

    您可以在距离计算中使用这个新的sf_intersection对象。