使用预先训练的caffe模型进行图像分类

时间:2018-04-16 09:34:02

标签: c++ opencv visual-c++ caffe object-recognition

我正在使用预先训练的caffe模型进行图像分类项目,在visual studio中, openCV3.4.0 C ++

我面临一些错误:

  1. readNet:Identifier未找到
  2. blobFromImage:function不接受7个参数
  3. 我从this link

    复制了代码

    请帮助我,因为我是新手。谢谢。

    代码:

    const char* keys =
    "{ help  h     | | Print help message. }"
    "{ input i     | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
    "{ model m     | | Path to a binary file of model contains trained weights. "
    "It could be a file with extensions .caffemodel (Caffe), "
    ".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }"
    "{ config c    | | Path to a text file of model contains network configuration. "
    "It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }"
    "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
    "{ classes     | | Optional path to a text file with names of classes. }"
    "{ mean        | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
    "{ scale       | 1 | Preprocess input image by multiplying on a scale factor. }"
    "{ width       |   | Preprocess input image by resizing to a specific width. }"
    "{ height      |   | Preprocess input image by resizing to a specific height. }"
    "{ rgb         |   | Indicate that model works with RGB input images instead BGR ones. }"
    "{ backend     | 0 | Choose one of computation backends: "
    "0: default C++ backend, "
    "1: Halide language (http://halide-lang.org/), "
    "2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}"
    "{ target      | 0 | Choose one of target computation devices: "
    "0: CPU target (by default),"
    "1: OpenCL }";
    
    
    using namespace cv;
    using namespace dnn;
    std::vector<std::string> classes;
    
    
    int main(int argc, char** argv)
    {
        CommandLineParser parser(argc, argv, keys);
        parser.about("Use this script to run classification deep learning networks using OpenCV.");
        if (argc == 1 || parser.has("help"))
        {
            parser.printMessage();
            return 0;
        }
        float scale = parser.get<float>("scale");
        Scalar mean = parser.get<Scalar>("mean");
        bool swapRB = parser.get<bool>("rgb");
        CV_Assert(parser.has("width"), parser.has("height"));
        int inpWidth = parser.get<int>("width");
        int inpHeight = parser.get<int>("height");
        String model = parser.get<String>("model");
        String config = parser.get<String>("config");
        String framework = parser.get<String>("framework");
        int backendId = parser.get<int>("backend");
        int targetId = parser.get<int>("target");
        // Open file with classes names.
        if (parser.has("classes"))
        {
            std::string file = parser.get<String>("classes");
            std::ifstream ifs(file.c_str());
            if (!ifs.is_open())
                CV_Error(Error::StsError, "File " + file + " not found");
            std::string line;
            while (std::getline(ifs, line))
            {
                classes.push_back(line);
            }
        }
        CV_Assert(parser.has("model"));
        Net net = readNet(model, config, framework);
        net.setPreferableBackend(backendId);
        net.setPreferableTarget(targetId);
        // Create a window
        static const std::string kWinName = "Deep learning image classification in OpenCV";
        namedWindow(kWinName, WINDOW_NORMAL);
        VideoCapture cap;
        if (parser.has("input"))
            cap.open(parser.get<String>("input"));
        else
            cap.open(0);
        // Process frames.
        Mat frame, blob;
        while (waitKey(1) < 0)
        {
            cap >> frame;
            if (frame.empty())
            {
                waitKey();
                break;
            }
            blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
            net.setInput(blob);
            Mat prob = net.forward();
            Point classIdPoint;
            double confidence;
            minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
            int classId = classIdPoint.x;
            // Put efficiency information.
            std::vector<double> layersTimes;
            double freq = getTickFrequency() / 1000;
            double t = net.getPerfProfile(layersTimes) / freq;
            std::string label = format("Inference time: %.2f ms", t);
            putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
            // Print predicted class.
            label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() :
                classes[classId].c_str()),
                confidence);
            putText(frame, label, Point(0, 40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
            imshow(kWinName, frame);
        }
        return 0;
    }
    

1 个答案:

答案 0 :(得分:2)

您复制的代码是指开发分支 3.4.1-dev ,与您使用的版本(3.4.0)相比有很大差异。

一次,根据文档here readNet 方法不可用(因此,错误)。

升级到分支机构3.4.1-dev或使用为您的版本here提供的示例。