Scala spark:如何使用数据集来创建具有snake_case架构的案例类?

时间:2018-04-16 08:46:14

标签: scala apache-spark apache-spark-dataset

我有以下案例类:

+--------------------+------------------+
|            col_name|         data_type|
+--------------------+------------------+
|             user_id|            string|
+--------------------+------------------+

以及以下架构:

DataFrame

当我尝试将Dataset[User]转换为带有spark.read.table("MyTable").as[User]的已键入Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve ''`user_id`' given input columns: [userId];; 时,我收到一个错误,指出字段名称不匹配:

user_id

是否有任何简单的方法可以解决这个问题,而不会破坏scala惯用语并命名我的字段Encoder?当然,我的真实表有很多字段,而且我有更多的case类/表,所以为每个case类手动定义{{1}}是不可行的(而且我不太了解宏) - 那么,这是不可能的;虽然我很乐意使用一个,如果存在的话!)。

我觉得我错过了一个非常明显的“将snake_case转换为camelCase = true”选项,因为几乎任何我曾经使用过的ORM都存在这个选项。

1 个答案:

答案 0 :(得分:0)

scala> val df = Seq(("Eric" ,"Theodore", "Cartman"), ("Butters", "Leopold", "Stotch")).toDF.select(concat($"_1", lit(" "), ($"_2")) as "first_and_middle_name", $"_3" as "last_name")
df: org.apache.spark.sql.DataFrame = [first_and_middle_name: string, last_name: string]

scala> df.show
+---------------------+---------+
|first_and_middle_name|last_name|
+---------------------+---------+
|        Eric Theodore|  Cartman|
|      Butters Leopold|   Stotch|
+---------------------+---------+


scala> val ccnames = df.columns.map(sc => {val ccn = sc.split("_")
    | (ccn.head +: ccn.tail.map(_.capitalize)).mkString
    | })
ccnames: Array[String] = Array(firstAndMiddleName, lastName)

scala> df.toDF(ccnames: _*).show
+------------------+--------+
|firstAndMiddleName|lastName|
+------------------+--------+
|     Eric Theodore| Cartman|
|   Butters Leopold|  Stotch|
+------------------+--------+

编辑:这有帮助吗?定义一个需要加载程序的函数:String => DataFrame和路径:String。

scala> val parquetloader = spark.read.parquet _
parquetloader: String => org.apache.spark.sql.DataFrame = <function1>

scala> val tableloader = spark.read.table _
tableloader: String => org.apache.spark.sql.DataFrame = <function1>

scala> val textloader = spark.read.text _
textloader: String => org.apache.spark.sql.DataFrame = <function1>

// csv loader and others

def snakeCaseToCamelCaseDataFrameColumns(path: String, loader: String => DataFrame): DataFrame = {
  val ccnames = loader(path).columns.map(sc => {val ccn = sc.split("_")
    (ccn.head +: ccn.tail.map(_.capitalize)).mkString
    })
  df.toDF(ccnames: _*)
}

scala> :paste
// Entering paste mode (ctrl-D to finish)

def snakeCaseToCamelCaseDataFrameColumns(path: String, loader: String => DataFrame): DataFrame = {
      val ccnames = loader(path).columns.map(sc => {val ccn = sc.split("_")
        (ccn.head +: ccn.tail.map(_.capitalize)).mkString
        })
      df.toDF(ccnames: _*)
    }

// Exiting paste mode, now interpreting.

snakeCaseToCamelCaseDataFrameColumns: (path: String, loader: String => org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame

val oneDF = snakeCaseToCamelCaseDataFrameColumns(tableloader("/path/to/table"))
val twoDF = snakeCaseToCamelCaseDataFrameColumns(parquetloader("/path/to/parquet/file"))