在聚合查询

时间:2018-04-16 07:11:26

标签: elasticsearch kibana aggregation

我希望可视化存储在Elasticsearch上的数据。我的可视化中有一个时间过滤器和桶式过滤器。让我解释一下我存储在Elasticsearch中的数据的问题。 例如;根据“已创建”值,第一项的“已创建”值为02.03.2018。由于此值,Elasticsearch将第一个存储桶时间间隔定义为02.03.2018-05.03.2018。 另一方面,我希望存储在Elasticsearch中的数据根据​​我想要的时间范围进行存储。 我的意思是我希望Elasticsearch强制按照递增的顺序创建像01.03.2018,04.03.2018,07.03.2018等的桶

这是我的查询

GET alerts/sighting/_search
{
  "size": 0,
  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "created": {
              "gte": 0,
              "lte": 1611859043000,
              "format": "epoch_millis"
            }
          }
        }
      ]
    }
  },
  "aggs": {
    "HEATMAP": {
      "date_histogram": {
        "field": "created",
        "interval": "3D"
      },
      "aggs": {
        "BEHAVIOUR_CHANGE": {
          "terms": {
            "field": "labels",
            "include": "behavior-change"
          },
          "aggs": {
            "TOTAL_ALERT_SCORE": {
              "sum": {
                "field": "x_nova_confidence"
              }
            }
          }
        }
      }
    }
  }
}

这是我的结果

{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3360,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "HEATMAP": {
      "buckets": [
        {
          "key_as_string": "2018-03-02T00:00:00.000Z",
          "key": 1519948800000,
          "doc_count": 729,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "behavior-change",
                "doc_count": 212,
                "TOTAL_ALERT_SCORE": {
                  "value": 0.0021199999999999735
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2018-03-05T00:00:00.000Z",
          "key": 1520208000000,
          "doc_count": 601,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "behavior-change",
                "doc_count": 78,
                "TOTAL_ALERT_SCORE": {
                  "value": 0.0007799999999999907
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2018-03-08T00:00:00.000Z",
          "key": 1520467200000,
          "doc_count": 433,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "behavior-change",
                "doc_count": 96,
                "TOTAL_ALERT_SCORE": {
                  "value": 0.0009599999999999886
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2018-03-11T00:00:00.000Z",
          "key": 1520726400000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-14T00:00:00.000Z",
          "key": 1520985600000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-17T00:00:00.000Z",
          "key": 1521244800000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-20T00:00:00.000Z",
          "key": 1521504000000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-23T00:00:00.000Z",
          "key": 1521763200000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-26T00:00:00.000Z",
          "key": 1522022400000,
          "doc_count": 365,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-03-29T00:00:00.000Z",
          "key": 1522281600000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-04-01T00:00:00.000Z",
          "key": 1522540800000,
          "doc_count": 0,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        },
        {
          "key_as_string": "2018-04-04T00:00:00.000Z",
          "key": 1522800000000,
          "doc_count": 3,
          "BEHAVIOUR_CHANGE": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": []
          }
        }
      ]
    }
  }
}

0 个答案:

没有答案