我有一个非常广泛的数据框,其中包含标准的人口统计特征(年龄,性别,种族,教育,收入等)。我也有受访者对问题的回答,可以用四种方式之一(“cb”,“lb”,“lw”或“cw”)开头。
数据框目前采用宽格式,每行代表一个受访者的答案。我想将其转换为长格式,但我找不到使用reshape2库的直接解决方案。
我希望将所有人口统计特征保留为他们自己的列,但将问题,答案,信心和得分列减少到他们自己的熔化列中。这是我正在寻找的想法:
string <- "
response_id,age,sex,race_1,race_2,race_3,cb_1,cb_1_conf,cb_1_ans,cb_1_score,lb_1,lb_1_conf,lb_1_ans,lb_1_score
11,25,M,white,NA,NA,Astrophysicist,9,Dog,0,Jackson,8,Jackson,1
22,27,F,NA,black,asian,Monkey,8,Dog,0,Jackson,7,Jackson,1"
x <- read.csv(con <- textConnection(string), header=TRUE)
看起来像这样:
> x
response_id age sex race_1 race_2 race_3 cb_1 cb_1_conf cb_1_ans cb_1_score lb_1 lb_1_conf lb_1_ans lb_1_score
1 11 25 M white <NA> NA Astrophysicist 9 Dog 0 Jackson 8 Jackson 1
2 22 27 F <NA> black NA Monkey 8 Dog 0 Jackson 7 Jackson 1
希望将其转换为此格式:
string_2 <- "
response_id,age,sex,race,question,response,confidence,correct_answer,score
11,25,M,white,cb_1,Astrophysicist,9,Dog,0
11,25,M,white,lb_1,Jackson,8,Jackson,1
22,27,F,black/asian,cb_1,Monkey,8,Dog,0
22,27,F,black/asian,lb_1,Jackson,8,Jackson,1
"
x_2 <- read.csv(con <- textConnection(string_2), header=TRUE)
response_id age sex race question response confidence correct_answer score
1 11 25 M white cb_1 Astrophysicist 9 Dog 0
2 11 25 M white lb_1 Jackson 8 Jackson 1
3 22 27 F black/asian cb_1 Monkey 8 Dog 0
4 22 27 F black/asian lb_1 Jackson 8 Jackson 1
我尝试将df子集化为仅包含以cb,lb,cw或lw为前缀的列,然后是:
melt(subset, id=c("ResponseID"),
+ measure.vars=grep("^(CB|LB|LW|CW)", colnames(subset)))
But this doesn't allow me to flexibly melt the _conf columns the _ans columns and the _score columns.
I had to modify Maurits' answer a bit to work better for my case. Here is my solution:
df_test <- df_ans %>%
unite(race, contains("race"), sep = "/") %>% # combine race_1,2,3
mutate(race = str_replace_all(race, "(/NA|NA/)", "")) %>% # replace NA from race
select_all( ~ gsub("(^[A-Z][A-Z]_\\d+$)", "\\1_response", .)) %>% # add "_response" to Q
gather(key, val, -(1:24)) %>% # wide to long
separate(key, c("q1", "q2", "item")) %>% # split into Q + item
unite(question, q1, q2, sep = "_") %>% # [continued]
mutate(item = gsub("_", "", item)) %>% # [continued]
spread(item, val) %>% # long to wide
rename(answer = ans, confidence = con) # rename columns
答案 0 :(得分:4)
以下是tidyverse
解决方案:
x %>%
unite(race, contains("race"), sep = "/") %>% # combine race_1,2,3
mutate(race = str_replace_all(race, "(/NA|NA/)", "")) %>% # replace NA from race
select_all( ~ gsub("^(\\w+_\\d)$", "\\1_response", .)) %>% # add "_response" to Q
gather(key, val, -(1:4)) %>% # wide to long
separate(key, c("q1", "q2", "item")) %>% # split into Q + item
unite(question, q1, q2, sep = "_") %>% # [continued]
mutate(item = gsub("_", "", item)) %>% # [continued]
spread(item, val) %>% # long to wide
rename(answer = ans, confidence = conf) # rename columns
# response_id age sex race question answer confidence response
#1 11 25 M white cb_1 Dog 9 Astrophysicist
#2 11 25 M white lb_1 Jackson 8 Jackson
#3 22 27 F black/asian cb_1 Dog 8 Monkey
#4 22 27 F black/asian lb_1 Jackson 7 Jackson
# score
#1 0
#2 1
#3 0
#4 1
说明:
unite
race_2 race
race_3 race_1,
NA的条目创建,
d , whilst removing
。gather
,spread
和separate
条目将question
,answer
,{confidence
分开{1}}和response
。\\w+_\\d
(例如cb_1
,lb_1
);必要时进行调整。