如何从张量流DNNRegressor模型中提取特征的相对重要性?

时间:2018-04-13 11:46:29

标签: python tensorflow machine-learning deep-learning regression

我按照这两篇文章来了解恢复已保存的模型,然后从中提取变量:

但现在我无法理解这些变量究竟意味着什么以及如何理解模型对学习过程中的特征给出的相对重要性?以下是我的代码中tf.train.list_variablestf.train.load_variables(分别)的输出:

>> tf.train.list_variables('./dnn_fe_trial1/model.ckpt-1')

            [('dnn/hiddenlayer_0/biases', [50]),
            ('dnn/hiddenlayer_0/biases/enlayer_0/biases/part_0/Adam', [50]),
            ('dnn/hiddenlayer_0/biases/enlayer_0/biases/part_0/Adam_1', [50]),
            ('dnn/hiddenlayer_0/weights', [61, 50]),
            ('dnn/hiddenlayer_0/weights/nlayer_0/weights/part_0/Adam', [61, 50]),
            ('dnn/hiddenlayer_0/weights/nlayer_0/weights/part_0/Adam_1', [61, 50]),
            ('dnn/input_from_feature_columns/brand_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/brand_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/brand_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/input_from_feature_columns/city_embedding/weights', [12, 3]),
            ('dnn/input_from_feature_columns/city_embedding/weights/mbedding/weights/part_0/Adam', [12, 3]),
            ('dnn/input_from_feature_columns/city_embedding/weights/mbedding/weights/part_0/Adam_1', [12, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights', [7, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights/mbedding/weights/part_0/Adam', [7, 3]),
            ('dnn/input_from_feature_columns/dow_embedding/weights/mbedding/weights/part_0/Adam_1', [7, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights', [11, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights/mbedding/weights/part_0/Adam', [11, 3]),
            ('dnn/input_from_feature_columns/l_cat_embedding/weights/mbedding/weights/part_0/Adam_1', [11, 3]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/product_id_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights/mbedding/weights/part_0/Adam', [10000, 16]),
            ('dnn/input_from_feature_columns/type_id_embedding/weights/mbedding/weights/part_0/Adam_1', [10000, 16]),
            ('dnn/logits/biases', [1]),
            ('dnn/logits/biases/nn/logits/biases/part_0/Adam', [1]),
            ('dnn/logits/biases/nn/logits/biases/part_0/Adam_1', [1]),
            ('dnn/logits/weights', [50, 1]),
            ('dnn/logits/weights/n/logits/weights/part_0/Adam', [50, 1]),
            ('dnn/logits/weights/n/logits/weights/part_0/Adam_1', [50, 1]),
            ('dnn/regression_head/dnn/learning_rate', []),
            ('dnn/regression_head/train_op/dnn/beta1_power', []),
            ('dnn/regression_head/train_op/dnn/beta2_power', []),
            ('global_step', [])]

>> tf.train.load_variable('./dnn_fe_trial1/model.ckpt-1','dnn/hiddenlayer_0/weights')

            array([[ 0.14350541,  0.18532775, -0.03176343, ..., -0.07279533,
            -0.08580479, -0.07619692],
            [ 0.16894072, -0.10593006,  0.06088932, ..., -0.01411209,
            -0.26995516,  0.15667924],
            [-0.10020741, -0.03164399, -0.14427225, ..., -0.02787848,
            -0.15646952, -0.1361219 ],
            ...,
            [ 0.15014522,  0.15378515, -0.05414914, ..., -0.16788298,
            -0.14711154, -0.226382  ],
            [-0.16823539,  0.2009476 , -0.271177  , ..., -0.10694946,
            -0.22870012, -0.13458726],
            [-0.13175508,  0.15535942, -0.18468232, ..., -0.1362714 ,
            -0.27476427, -0.21606216]], dtype=float32)

0 个答案:

没有答案