这可能是一个基本问题,但我现在已经被困住了一段时间。
我的列名很少,我正在尝试创建一个组合列表,它将Spark中的两个元素组合在一起。这是我尝试创建组合的列表
numeric_cols = ["age", "hours-per-week", "fnlwgt"]
我正在使用combinations
模块中的itertools
from itertools import combinations
from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType
def combinations2(x): return combinations(x,2)
udf_combinations2 = udf(combinations2,ArrayType())
但是在跑线
pairs = udf_combinations2(numeric_cols)
我收到以下错误
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/sg/Downloads/spark/python/pyspark/sql/udf.py", line 179, in wrapper
return self(*args)
File "/Users/sg/Downloads/spark/python/pyspark/sql/udf.py", line 159, in __call__
return Column(judf.apply(_to_seq(sc, cols, _to_java_column)))
File "/Users/sg/Downloads/spark/python/pyspark/sql/column.py", line 66, in _to_seq
cols = [converter(c) for c in cols]
File "/Users/sg/Downloads/spark/python/pyspark/sql/column.py", line 66, in <listcomp>
cols = [converter(c) for c in cols]
File "/Users/sg/Downloads/spark/python/pyspark/sql/column.py", line 54, in _to_java_column
"function.".format(col, type(col)))
TypeError: Invalid argument, not a string or column: ['age', 'hours-per-week', 'fnlwgt'] of type <class 'list'>. For column literals, use 'lit', 'array', 'struct' or 'create_map' function.
对于这种情况,我不知道如何使用最后一行中提到的函数。任何方向和提示都会很棒。
由于
答案 0 :(得分:1)
首先正确定义udf
:
df = spark.createDataFrame([(1, 2 ,3)], ("age", "hours-per-week", "fnlwgt"))
您可以使用单个参数
定义它@udf("array<struct<_1: double, _2: double>>")
def combinations_list(x):
return combinations(x, 2)
或varargs
@udf("array<struct<_1: double, _2: double>>")
def combinations_varargs(*x):
return combinations(list(x), 2)
在两种情况下你都来声明输出数组的类型。在这里,我们将使用double
和structs
。
确保输入类型与声明的输出类型匹配:
from pyspark.sql.functions import col
numeric_cols = [
col(c).cast("double") for c in ["age", "hours-per-week", "fnlwgt"]
]
要调用单个参数版本,请使用array
from pyspark.sql.functions import array
df.select(
combinations_list(array(*numeric_cols)).alias("combinations")
).show(truncate=False)
# +---------------------------------+
# |combinations |
# +---------------------------------+
# |[[1.0,2.0], [1.0,3.0], [2.0,3.0]]|
# +---------------------------------+
调用varargs variant unpack values
df.select(
combinations_varargs(*numeric_cols).alias("combinations")
).show(truncate=False)
# +---------------------------------+
# |combinations |
# +---------------------------------+
# |[[1.0,2.0], [1.0,3.0], [2.0,3.0]]|
# +---------------------------------+