Scikit的平均精度得分输入形状不好

时间:2018-04-12 13:46:53

标签: python scikit-learn

我正在尝试绘制精确/召回得分曲线。这是我的代码:

    lbl_enc = preprocessing.LabelEncoder()
    labels = lbl_enc.fit_transform(test_tags)

    y_score = clf.predict_proba(test_set)

    average_precision = average_precision_score(labels, y_score)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    precision, recall, _ = precision_recall_curve(labels, y_score)

    plt.step(recall, precision, color='b', alpha=0.2,
             where='post')
    plt.fill_between(recall, precision, step='post', alpha=0.2,
                     color='b')

    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('2-class Precision-Recall curve: Average P-R = {0:0.2f}'.format(
        average_precision))

在我计算average_precision_score时,我得到了由“y_score”变量引起的“ValueError:bad input shape(119,2)”。

y_score采用以下格式:

array([[0.45953712, 0.54046288],
   [0.78289908, 0.21710092],
   [0.13488789, 0.86511211],
   [0.56162583, 0.43837417],
   (...)
   [0.4595595 , 0.5404405 ]])

虽然标签在此:

array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1])

如何计算平均精度得分呢?提前谢谢。

1 个答案:

答案 0 :(得分:1)

documentation中,它说:

  

y_score:array,shape = [n_samples]或[n_samples,n_classes]

     

目标分数,可以是正数的概率估计值   类,置信度值或非阈值度量的决策   (由某些分类器上的“decision_function”返回)。

因此我相信你只需要这样做:

average_precision  = average_precision_score(labels, y_score[:,1])