我正在尝试绘制精确/召回得分曲线。这是我的代码:
lbl_enc = preprocessing.LabelEncoder()
labels = lbl_enc.fit_transform(test_tags)
y_score = clf.predict_proba(test_set)
average_precision = average_precision_score(labels, y_score)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
precision, recall, _ = precision_recall_curve(labels, y_score)
plt.step(recall, precision, color='b', alpha=0.2,
where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2,
color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Precision-Recall curve: Average P-R = {0:0.2f}'.format(
average_precision))
在我计算average_precision_score时,我得到了由“y_score”变量引起的“ValueError:bad input shape(119,2)”。
y_score采用以下格式:
array([[0.45953712, 0.54046288],
[0.78289908, 0.21710092],
[0.13488789, 0.86511211],
[0.56162583, 0.43837417],
(...)
[0.4595595 , 0.5404405 ]])
虽然标签在此:
array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1])
如何计算平均精度得分呢?提前谢谢。
答案 0 :(得分:1)
在documentation中,它说:
y_score:array,shape = [n_samples]或[n_samples,n_classes]
目标分数,可以是正数的概率估计值 类,置信度值或非阈值度量的决策 (由某些分类器上的“decision_function”返回)。
因此我相信你只需要这样做:
average_precision = average_precision_score(labels, y_score[:,1])