首先,我使用tf.contrib.gan训练了一个模型,我能够训练模型。
tf.contrib.gan.gan_train(
train_ops,
hooks=(
[tf.train.StopAtStepHook(num_steps=FLAGS.max_number_of_steps),
tf.train.LoggingTensorHook([status_message], every_n_iter=10)] +
sync_hooks),
logdir=FLAGS.train_log_dir,
master=FLAGS.master,
is_chief=FLAGS.task == 0,
config=conf
)
然后我想评估模型。尝试以下列方式恢复检查点时,
with tf.name_scope('inputs'):
real_images, one_hot_labels, _, num_classes = data_provider.provide_data(
FLAGS.batch_size, FLAGS.dataset_dir)
logits, end_points_des, feature, net = dcgan.discriminator(real_images)
variables_to_restore = slim.get_model_variables()
restorer = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
restorer.restore(sess, ckpt.model_checkpoint_path)
我得到了这个例外:
2018-04-11 20:05:03.304089: W tensorflow/core/framework/op_kernel.cc:1192] Not found: Key Discriminator/fully_connected_layer2/weights not found in checkpoint
2018-04-11 20:05:03.304280: W tensorflow/core/framework/op_kernel.cc:1192] Not found: Key Discriminator/conv0/BatchNorm/Discriminator/conv0/BatchNorm/moving_mean/local_step not found in checkpoint
2018-04-11 20:05:03.304484: W tensorflow/core/framework/op_kernel.cc:1192] Not found: Key Discriminator/conv0/BatchNorm/beta not found in checkpoint
2018-04-11 20:05:03.305197: W tensorflow/core/framework/op_kernel.cc:1192] Not found: Key Discriminator/fully_connected_layer2/biases not found in checkpoint
我正在使用TF 1.7rc1
答案 0 :(得分:0)
实际上,生成的图表中存在问题。这些是我为解决这个问题所做的步骤。
第1步: 使用以下代码
打印checkpoit文件中的所有变量from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
print_tensors_in_checkpoint_file(file_name, '')
步骤2:然后我注意到每个键都包含第一个范围(' Discriminator')的复制,但是当我尝试加载模型时,它不包含该部分。因此,我必须以下列方式删除该附加部分,
def name_in_checkpoint(var):
if "Discriminator/" in var.op.name:
return var.op.name.replace("Discriminator/", "Discriminator/Discriminator/")
logits, end_points_des, feature, net = dcgan.discriminator(real_images)
variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var): var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore)
步骤3:然后我能够成功加载模型,如下所示。
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
restorer.restore(sess, ckpt.model_checkpoint_path)
希望这会帮助可能遇到同样问题的人。