我有这些坐标:
coord = [(10,10), (13,10), (13,13)]
现在我需要新的坐标。 两个坐标之间的路径总是一个。 例如:
(10,10)
(11,10)
(12,10)
(13,10)
(13,11)
(13,12)
(13,13)
有什么想法吗?
#我找到了解决方案。
for n in range(len(coord)-1):
lengthx = coord[n+1][0] - coord[n][0]
lengthy = coord[n+1][1] - coord[n][1]
length = (lengthx**2 + lengthy**2)**.5
for m in range(length):
print coord[n][0]+lengthx/length*m, coord[n][1]+lengthy/length*m
答案 0 :(得分:1)
Bresenham's line algorithm上的一个简单变体将只使用整数运算实现你想要的东西(所以它应该明显更快):
def steps(path):
if len(path) > 0:
for i in range(1, len(path)):
for step in steps_between(path[i - 1], path[i]):
yield step
yield path[-1]
def steps_between(start, end):
x0, y0 = start
x1, y1 = end
steep = abs(y1 - y0) > abs(x1 - x0)
if steep:
x0, y0 = y0, x0
x1, y1 = y1, x1
if y0 > y1:
x0, x1 = x1, x0
y0, y1 = y1, y0
if y0 < y1:
ystep = 1
else:
ystep = -1
deltax = x1 - x0
deltay = abs(y1 - y0)
error = -deltax / 2
y = y0
for x in range(x0, x1):
if steep:
yield (y, x)
else:
yield (x, y)
error += deltay
if error > 0:
y += ystep
error -= deltax
if steep:
yield (y, x)
else:
yield (x, y)
coords = [(10, 10), (13, 10), (13, 13)]
print "\n".join(str(step) for step in steps(coords))
以上版画:
(10, 10)
(11, 10)
(12, 10)
(13, 10)
(13, 11)
(13, 12)
(13, 13)
当然,当x
和y
在路径上的两点之间发生变化时,Bresenham按预期工作:
coords = [(10, 10), (13, 12), (15, 13)]
print "\n".join(str(step) for step in steps(coords))
打印:
(10, 10)
(11, 10)
(11, 11)
(12, 11)
(12, 12)
(13, 12)
(14, 12)
(14, 13)
(15, 13)