数据:
structure(list(id = c(1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5),
ax = c("a", "a", "b", "b", "b", "b", "b", "b", "c", "c",
"d", "d", "e"), time = c(1, 3, 0, 2, 4, 5, 6, 8, 7, 9, 10,
11, 12)), .Names = c("id", "ax", "time"), class = c("data.table",
"data.frame"), row.names = c(NA, -13L))
看起来像:
id ax time
1: 1 a 1
2: 1 a 3
3: 2 b 0
4: 2 b 2
5: 2 b 4
6: 2 b 5
7: 2 b 6
8: 2 b 8
9: 3 c 7
10: 3 c 9
11: 4 d 10
12: 4 d 11
13: 5 e 12
我希望将前一组的max
放在实际组旁边:
期望的输出:
id ax time newCol
1: 1 a 1 NA
2: 1 a 3 NA
3: 2 b 0 3
4: 2 b 2 3
5: 2 b 4 3
6: 2 b 5 3
7: 2 b 6 3
8: 2 b 8 3
9: 3 c 7 8
10: 3 c 9 8
11: 4 d 10 9
12: 4 d 11 9
13: 5 e 12 11
是否也可以拥有“previous-previous”grp的值?
强调baseR
,data.table
和tidyverse
解决方案
可以按E id
或ax
进行分组。这个例子在这里有点多余。
答案 0 :(得分:4)
data.table
解决方案:
dtt.max <- dtt[, .(max = max(time)), by = ax]
dtt.max[, max.prev := shift(max)]
dtt[dtt.max, newCol := i.max.prev, on = 'ax']
# > dtt
# id ax time newCol
# 1: 1 a 1 NA
# 2: 1 a 3 NA
# 3: 2 b 0 3
# 4: 2 b 2 3
# 5: 2 b 4 3
# 6: 2 b 5 3
# 7: 2 b 6 3
# 8: 2 b 8 3
# 9: 3 c 7 8
# 10: 3 c 9 8
# 11: 4 d 10 9
# 12: 4 d 11 9
# 13: 5 e 12 11
答案 1 :(得分:3)
data.table
的 id + 1
解决方案
library(data.table)
merge(d, setDT(d)[, max(time), id + 1], all.x = TRUE)
答案 2 :(得分:2)
这是一种dplyr
方法。这里的关键是在必要时进行分组和取消分组:
df %>%
group_by(ax) %>%
mutate(new = time[n()]) %>%
ungroup() %>%
mutate(new = lag(new)) %>%
group_by(ax) %>%
mutate(new = new[1])
# A tibble: 13 x 4
# Groups: ax [5]
id ax time new
<dbl> <chr> <dbl> <dbl>
1 1. a 1. NA
2 1. a 3. NA
3 2. b 0. 3.
4 2. b 2. 3.
5 2. b 4. 3.
6 2. b 5. 3.
7 2. b 6. 3.
8 2. b 8. 3.
9 3. c 7. 8.
10 3. c 9. 8.
11 4. d 10. 9.
12 4. d 11. 9.
13 5. e 12. 11.
答案 3 :(得分:1)
假设id
与group
相同:
dfr <- dfr %>% group_by(id) %>% mutate(groupmax = max(time))
dfr$old_group_max <- dfr$groupmax[match(dfr$id - 1, dfr$id)]
倒数第三组留作练习: - )
答案 4 :(得分:1)
1)这不使用任何包。它计算每个组给出Ag
的最大值,然后滞后给予LagMax
。最后,它使用merge
连接到原始数据框DF
:
Ag <- aggregate(time ~ id, DF, max)
LagMax <- transform(Ag, lagmax = c(NA, head(time, -1)), time = NULL)
merge(DF, LagMax, by = "id", all.x = TRUE)
,并提供:
id ax time lagmax
1 1 a 1 NA
2 1 a 3 NA
3 2 b 0 3
4 2 b 2 3
5 2 b 4 3
6 2 b 5 3
7 2 b 6 3
8 2 b 8 3
9 3 c 7 8
10 3 c 9 8
11 4 d 10 9
12 4 d 11 9
13 5 e 12 11
2)这会在id中对时间进行排序,以便我们知道最大值是每个id组中的最后一个值。
o <- order(factor(DF$id, levels = unique(DF$id)), DF$time)
Time <- DF$time[o]
lagmax <- function(r) if (r[1] == 1) NA else Time[r[1] - 1]
transform(DF, lagmax = ave(seq_along(id), id, FUN = lagmax))
在问题中,time
值已在id
内排序,如果已知情况如此,则上述内容可缩短为:
lagmax <- function(r) if (r[1] == 1) NA else DF$time[r[1] - 1]
transform(DF, lagmax = ave(seq_along(id), id, FUN = lagmax))
3)这个单行是(2)的数据表格翻译:
library(data.table)
DT <- copy(DF) # don't overwrite DF
setDT(DT)[, g:=rleid(id)][, lagmax := DT$time[.I[1]-1], keyby = c("g", "id")]
问题time
中的示例数据在id
内排序,如果知道是这种情况,我们可以使用以下较短的代码代替上面的最后一行
setDT(DT)[, lagmax := DT$time[.I[1]-1], by = id]