我有一个小的,不平衡的数据集,我想用不同的算法进行测试。出于评估目的,我需要多个性能指标(准确度,精确度,召回率,fscore,支持度)。
这就是我打算这样做的方式,但我并不满意,因为可能有一个更简单的解决方案:
skf = StratifiedKFold(n_splits=3, random_state=42, shuffle=True)
accuracy = []
for train_index, test_index in skf.split(X,Y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = Y[train_index], Y[test_index]
gradientBoost.fit(X_train, y_train)
y_pred = gradientBoost.predict(X_test)
accuracy.append(round(accuracy_score(y_test, y_pred), 2))
precision, recall, fscore, support = np.round(score(y_test, y_pred), 2)
print('precision: ' + str(precision))
print('recall: ' + str(recall))
print('fscore: ' + str(fscore))
print('support: ' + str(support))
print(classification_report(y_test, y_pred))
meanAcc= np.mean(np.asarray(accuracy))
print('meanAcc: ', meanAcc)
理论上,我可以对所有指标进行平均,就像我为准确性所做的那样。是否有更简单和/或更有效的方法?
编辑:
我尝试绘制准确度并召回_加权作为得分手。不幸的是,只有精确度显示在图中。在图例中提到精确度+召回。
#Initialize classifier
clf_gini = DecisionTreeClassifier(criterion = "gini", random_state = 42,
max_depth=10, min_samples_leaf=8)
scoring = {'Accuracy' : make_scorer(accuracy_score), 'Recall' : 'recall_weighted'}
gs = GridSearchCV(DecisionTreeClassifier(criterion= 'entropy', random_state=42, min_samples_leaf = 10), param_grid={'max_depth' : range(2, 30, 2)},
scoring=scoring, cv=3, refit='Accuracy')
gs.fit(X_Distances, Y)
results = gs.cv_results_
plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
fontsize=16)
plt.xlabel("max_depth")
plt.ylabel("Score")
plt.grid()
ax = plt.axes()
ax.set_xlim(0, 32)
ax.set_ylim(0, 1)
# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_max_depth'].data, dtype=float)
for scorer, color in zip(sorted(scoring), ['g', 'k']):
for sample, style in (('train', '--'), ('test', '-')):
sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
sample_score_std = results['std_%s_%s' % (sample, scorer)]
ax.fill_between(X_axis, sample_score_mean - sample_score_std,
sample_score_mean + sample_score_std,
alpha=0.1 if sample == 'test' else 0, color=color)
ax.plot(X_axis, sample_score_mean, style, color=color,
alpha=1 if sample == 'test' else 0.7,
label="%s (%s)" % (scorer, sample))
best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
best_score = results['mean_test_%s' % scorer][best_index]
# Plot a dotted vertical line at the best score for that scorer marked by x
ax.plot([X_axis[best_index], ] * 2, [0, best_score],
linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)
# Annotate the best score for that scorer
ax.annotate("%0.2f" % best_score,
(X_axis[best_index], best_score + 0.005))
plt.legend(loc="best")
plt.grid('off')
plt.show()
答案 0 :(得分:1)
我们可以使用GridSearchCV for multi-metric evaluation:
# Author: Raghav RV <rvraghav93@gmail.com>
# License: BSD
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import make_hastie_10_2
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
X, y = make_hastie_10_2(n_samples=8000, random_state=42)
# The scorers can be either be one of the predefined metric strings or a scorer
# callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}
# Setting refit='AUC', refits an estimator on the whole dataset with the
# parameter setting that has the best cross-validated AUC score.
# That estimator is made available at ``gs.best_estimator_`` along with
# parameters like ``gs.best_score_``, ``gs.best_parameters_`` and
# ``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),
param_grid={'min_samples_split': range(2, 403, 10)},
scoring=scoring, cv=5, refit='AUC')
gs.fit(X, y)
results = gs.cv_results_
plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
fontsize=16)
plt.xlabel("min_samples_split")
plt.ylabel("Score")
plt.grid()
ax = plt.axes()
ax.set_xlim(0, 402)
ax.set_ylim(0.73, 1)
# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_min_samples_split'].data, dtype=float)
for scorer, color in zip(sorted(scoring), ['g', 'k']):
for sample, style in (('train', '--'), ('test', '-')):
sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
sample_score_std = results['std_%s_%s' % (sample, scorer)]
ax.fill_between(X_axis, sample_score_mean - sample_score_std,
sample_score_mean + sample_score_std,
alpha=0.1 if sample == 'test' else 0, color=color)
ax.plot(X_axis, sample_score_mean, style, color=color,
alpha=1 if sample == 'test' else 0.7,
label="%s (%s)" % (scorer, sample))
best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
best_score = results['mean_test_%s' % scorer][best_index]
# Plot a dotted vertical line at the best score for that scorer marked by x
ax.plot([X_axis[best_index], ] * 2, [0, best_score],
linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)
# Annotate the best score for that scorer
ax.annotate("%0.2f" % best_score,
(X_axis[best_index], best_score + 0.005))
plt.legend(loc="best")
plt.grid('off')
plt.show()
结果:
答案 1 :(得分:1)
sklearn
文档建议使用以下度量标准之一来评估分类:
让我们试试accuracy
和f1_weighted
:
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import make_classification
from sklearn.metrics import recall_score, make_scorer, accuracy_score
from sklearn.ensemble import RandomForestClassifier
X, y = make_classification(n_classes=10, n_informative=8, random_state=1)
scoring = {
'Accuracy' : 'accuracy',
'F1 (macro)' : 'f1_weighted',
}
scoring = {
'Accuracy' : 'accuracy',
'Recall' : 'f1_weighted',
}
gs = GridSearchCV(RandomForestClassifier(max_depth=5, random_state=42, min_samples_leaf = 10),
param_grid={'n_estimators' : range(2, 101, 2)}, return_train_score=True,
scoring=scoring, cv=3, refit='Accuracy')
gs.fit(X, y)
results = gs.cv_results_
##################
plt.figure(figsize=(12, 8))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",
fontsize=16)
plt.xlabel("n_estimators")
plt.ylabel("Score")
#plt.grid()
ax = plt.gca()
ax.set_xlim(0, 101)
ax.set_ylim(0, 1)
# Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_n_estimators'].data, dtype=float)
for scorer, color in zip(sorted(scoring), ['g', 'k']):
for sample, style in (('train', '--'), ('test', '-')):
print('plotting: {} ({})'.format(scorer, sample))
sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
sample_score_std = results['std_%s_%s' % (sample, scorer)]
ax.fill_between(X_axis, sample_score_mean - sample_score_std,
sample_score_mean + sample_score_std,
alpha=0.1 if sample == 'test' else 0, color=color)
ax.plot(X_axis, sample_score_mean, style, color=color,
alpha=1 if sample == 'test' else 0.7,
label="%s (%s)" % (scorer, sample))
best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
best_score = results['mean_test_%s' % scorer][best_index]
# Plot a dotted vertical line at the best score for that scorer marked by x
ax.plot([X_axis[best_index], ] * 2, [0, best_score],
linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)
# Annotate the best score for that scorer
ax.annotate("%0.2f" % best_score,
(X_axis[best_index], best_score + 0.005))
plt.legend(loc="best")
plt.grid(False)
plt.show()
结果: