我有一个3D网格/数组说u[nx+2][ny+2][nz+2]
。尾部+2对应于三维x,y,z
中的每一个中的两层晕细胞。我有另一个网格,允许细化(使用四叉树)因此我有每个单元格的莫顿指数(或Z顺序)。
让我们说,如果没有细化,两个网格在物理现实中是相似的(除了第二个代码没有晕细胞),我想找到的是一个具有morton id q
的单元格mid
是3D网格中的相应索引i
,j
和k
索引。基本上是mid
或Z-order的解码,以获得i,j,k
矩阵的对应u
。
寻找C解决方案,但任何其他编程语言的一般注释也可以。
对于正向编码,我遵循魔术位方法,如图所示 Morton Encoding using different methods
答案 0 :(得分:2)
Morton编码只是交错两个或多个组件的位。
如果我们按重要性的递增顺序对二进制数字进行编号,则无符号整数中的最低有效二进制数字为0(并且二进制数字 i 具有值2 i < / i> ),然后 N 的分量 k 中的二进制数字 i 对应于二进制数字( i N + k 。
以下是编码和解码三分量Morton码的两个简单函数:
#include <stdlib.h>
#include <inttypes.h>
/* This source is in the public domain. */
/* Morton encoding in binary (components 21-bit: 0..2097151)
0zyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyx */
#define BITMASK_0000000001000001000001000001000001000001000001000001000001000001 UINT64_C(18300341342965825)
#define BITMASK_0000001000001000001000001000001000001000001000001000001000001000 UINT64_C(146402730743726600)
#define BITMASK_0001000000000000000000000000000000000000000000000000000000000000 UINT64_C(1152921504606846976)
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
#define BITMASK_0000000000000011000000000011000000000011000000000011000000000011 UINT64_C(844631138906115)
#define BITMASK_0000000111000000000011000000000011000000000011000000000011000000 UINT64_C(126113986927919296)
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
#define BITMASK_0000000000000000000000000000000000001111000000000000000000001111 UINT64_C(251658255)
#define BITMASK_0000000000000000000000001111000000000000000000001111000000000000 UINT64_C(1030792212480)
#define BITMASK_0000000000011111000000000000000000000000000000000000000000000000 UINT64_C(8725724278030336)
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
#define BITMASK_0000000000000000000000000000000000000000000000000000000011111111 UINT64_C(255)
#define BITMASK_0000000000000000000000000001111111111111000000000000000000000000 UINT64_C(137422176256)
/* ccccccccccccccccccccc */
#define BITMASK_21BITS UINT64_C(2097151)
static inline void morton_decode(uint64_t m, uint32_t *xto, uint32_t *yto, uint32_t *zto)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = m,
y = m >> 1,
z = m >> 2;
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
x = (x & mask0) | ((x & mask1) >> 2) | ((x & mask2) >> 4);
y = (y & mask0) | ((y & mask1) >> 2) | ((y & mask2) >> 4);
z = (z & mask0) | ((z & mask1) >> 2) | ((z & mask2) >> 4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask3) | ((x & mask4) >> 4);
y = (y & mask3) | ((y & mask4) >> 4);
z = (z & mask3) | ((z & mask4) >> 4);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask5) | ((x & mask6) >> 8) | ((x & mask7) >> 16);
y = (y & mask5) | ((y & mask6) >> 8) | ((y & mask7) >> 16);
z = (z & mask5) | ((z & mask6) >> 8) | ((z & mask7) >> 16);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask8) | ((x & mask9) >> 16);
y = (y & mask8) | ((y & mask9) >> 16);
z = (z & mask8) | ((z & mask9) >> 16);
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
if (xto) *xto = x;
if (yto) *yto = y;
if (zto) *zto = z;
}
static inline uint64_t morton_encode(uint32_t xsrc, uint32_t ysrc, uint32_t zsrc)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = xsrc,
y = ysrc,
z = zsrc;
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
x = (x & mask8) | ((x << 16) & mask9);
y = (y & mask8) | ((y << 16) & mask9);
z = (z & mask8) | ((z << 16) & mask9);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask5) | ((x << 8) & mask6) | ((x << 16) & mask7);
y = (y & mask5) | ((y << 8) & mask6) | ((y << 16) & mask7);
z = (z & mask5) | ((z << 8) & mask6) | ((z << 16) & mask7);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask3) | ((x << 4) & mask4);
y = (y & mask3) | ((y << 4) & mask4);
z = (z & mask3) | ((z << 4) & mask4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask0) | ((x << 2) & mask1) | ((x << 4) & mask2);
y = (y & mask0) | ((y << 2) & mask1) | ((y << 4) & mask2);
z = (z & mask0) | ((z << 2) & mask1) | ((z << 4) & mask2);
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
return x | (y << 1) | (z << 2);
}
这些功能对称起作用。为了解码,二进制数字和数字组被转移到更大的连续单位;为了编码,二进制数字组通过移位进行分割和扩展。检查掩码(BITMASK_
常量以其二进制数字模式命名)和移位操作,以详细了解编码和解码的发生方式。
虽然两个功能非常有效,但它们并未优化。
上述功能已经过验证测试,可以使用随机21位无符号整数分量进行数十亿次往返:解码Morton编码的值会产生原始的三个分量。