我有"in_table"
,如下所示。我需要使用"Table1", "Table2", "Table3"
获取"Comb_table"
等等。基本上当Comb_table中的变量为1时,我需要在列表中包含。
在R语言中有没有有效的方法而不是手动输入所有组合?
感谢任何帮助。
感谢。
in_table:
POL Var1 Var2 Var3 Var4 Var5 Var6 Var7
8035 1 11 1 GRD 0030 0110 09/30
36763 1 88 13 GRD 5260 0300 11/15
36763 1 88 13 GRD 5280 0300 11/15
35786 1 88 13 GRD 0030 0110 09/30
Comb_table:
Var1 Var2 Var3 Var4 Var5 Var6 Var7
Table1 1 1 1 1 1 1 1
Table2 0 1 1 1 1 1 1
Table3 1 0 1 1 1 1 1
Table1 <- in_table[, .(Pol_count = length(unique(POL))), by = list(Var1,Var2,Var3,Var4,Var5,Var6,Var7)]
Table2 <- in_table[, .(Pol_count = length(unique(POL))), by = list(Var2,Var3,Var4,Var5,Var6,Var7)]
Table3 <- in_table[, .(Pol_count = length(unique(POL))), by = list(Var1,Var3,Var4,Var5,Var6,Var7)]
and so on.
答案 0 :(得分:3)
type InnerSetToArray<T> = {
[P in keyof T]:
T[P] extends Set<infer U>
? Array<U>
: T[P]
};
type InnerSet = { one: number, two: Set<string>, three: Set<Function>, four: Date };
// InnerArray === { one: number, two: string[], three: Function[], four: Date }
type InnerArray = InnerSetToArray<InnerSet>;
答案 1 :(得分:2)
这有效:
> library(magrittr)
> melt(comb_table, id="tab", variable.factor=FALSE)[value == 1] %>%
split(by="tab") %>%
lapply(function(z) in_table[, .(n = uniqueN(POL)), by=c(z$variable)])
$Table1
Var1 Var2 Var3 Var4 Var5 Var6 Var7 n
1: 1 11 1 GRD 30 110 09/30 1
2: 1 88 13 GRD 5260 300 11/15 1
3: 1 88 13 GRD 5280 300 11/15 1
4: 1 88 13 GRD 30 110 09/30 1
$Table3
Var1 Var3 Var4 Var5 Var6 Var7 n
1: 1 1 GRD 30 110 09/30 1
2: 1 13 GRD 5260 300 11/15 1
3: 1 13 GRD 5280 300 11/15 1
4: 1 13 GRD 30 110 09/30 1
$Table2
Var2 Var3 Var4 Var5 Var6 Var7 n
1: 11 1 GRD 30 110 09/30 1
2: 88 13 GRD 5260 300 11/15 1
3: 88 13 GRD 5280 300 11/15 1
4: 88 13 GRD 30 110 09/30 1
magrittr就是为了方便而在这里使用的。
或者,如果你把它全部放在一个表中并使用data.table&gt; = 1.10.5,那么这样的东西(我还没有测试过......)应该适用于分组集:< / p>
> melt(comb_table, id="tab", variable.factor=FALSE)[value == 1, groupingsets(
in_table,
sets = split(variable, tab)
)]
使用的数据:我认为OP的rownames是/应该是名为“tab”的列。
> dput(setDF(comb_table))
structure(list(tab = c("Table1", "Table2", "Table3"), Var1 = c(1L,
0L, 1L), Var2 = c(1L, 1L, 0L), Var3 = c(1L, 1L, 1L), Var4 = c(1L,
1L, 1L), Var5 = c(1L, 1L, 1L), Var6 = c(1L, 1L, 1L), Var7 = c(1L,
1L, 1L)), .Names = c("tab", "Var1", "Var2", "Var3", "Var4", "Var5",
"Var6", "Var7"), row.names = c(NA, -3L), class = "data.frame")
> dput(setDF(in_table))
structure(list(POL = c(8035L, 36763L, 36763L, 35786L), Var1 = c(1L,
1L, 1L, 1L), Var2 = c(11L, 88L, 88L, 88L), Var3 = c(1L, 13L,
13L, 13L), Var4 = c("GRD", "GRD", "GRD", "GRD"), Var5 = c(30L,
5260L, 5280L, 30L), Var6 = c(110L, 300L, 300L, 110L), Var7 = c("09/30",
"11/15", "11/15", "09/30")), .Names = c("POL", "Var1", "Var2",
"Var3", "Var4", "Var5", "Var6", "Var7"), row.names = c(NA, -4L
), class = "data.frame")
答案 2 :(得分:0)
可能是这样的:
创建一个具有赋予1
的变量名称的因子,并将NA
赋予0
nm_list <- data.frame( do.call("rbind", Map( function(x,y) as.character(factor(x, levels = c(0,1), labels = c(NA, y))),
x = Comb_table, y = names(Comb_table))),
stringsAsFactors = FALSE )
nm_list
# X1 X2 X3
# Var1 Var1 <NA> Var1
# Var2 Var2 Var2 <NA>
# Var3 Var3 Var3 Var3
# Var4 Var4 Var4 Var4
# Var5 Var5 Var5 Var5
# Var6 Var6 Var6 Var6
# Var7 Var7 Var7 Var7
library('data.table')
setDT(in_table) # convert data frame to data table by reference
lapply( nm_list, function(x) {
x <- na.omit(x) # remove NA
in_table[, .(Pol_count = length(unique(POL))), by = x] # extract the variables by passing the values to by argument
})
# $X1
# Var1 Var2 Var3 Var4 Var5 Var6 Var7 Pol_count
# 1: 1 11 1 GRD 30 110 09/30 1
# 2: 1 88 13 GRD 5260 300 11/15 1
# 3: 1 88 13 GRD 5280 300 11/15 1
# 4: 1 88 13 GRD 30 110 09/30 1
#
# $X2
# Var2 Var3 Var4 Var5 Var6 Var7 Pol_count
# 1: 11 1 GRD 30 110 09/30 1
# 2: 88 13 GRD 5260 300 11/15 1
# 3: 88 13 GRD 5280 300 11/15 1
# 4: 88 13 GRD 30 110 09/30 1
#
# $X3
# Var1 Var3 Var4 Var5 Var6 Var7 Pol_count
# 1: 1 1 GRD 30 110 09/30 1
# 2: 1 13 GRD 5260 300 11/15 1
# 3: 1 13 GRD 5280 300 11/15 1
# 4: 1 13 GRD 30 110 09/30 1
数据:强>
in_table <- read.table(text='POL Var1 Var2 Var3 Var4 Var5 Var6 Var7
8035 1 11 1 GRD 0030 0110 09/30
36763 1 88 13 GRD 5260 0300 11/15
36763 1 88 13 GRD 5280 0300 11/15
35786 1 88 13 GRD 0030 0110 09/30', header = TRUE)
Comb_table <- read.table(text = 'Var1 Var2 Var3 Var4 Var5 Var6 Var7
Table1 1 1 1 1 1 1 1
Table2 0 1 1 1 1 1 1
Table3 1 0 1 1 1 1 1')