我有一个非常令人沮丧的问题,试图加入一个KStream,由一个使用KafkaProducer的java驱动程序填充到一个GlobalKTable,它从一个Topic填充,然后使用JDBCConnector从MySQL中提取数据来填充表。无论我尝试做什么,KStream和GlobalKTable之间的连接都是无效的,两者都是相同的值。我的意思是从不调用ValueJoiner。我将通过显示下面的相关配置和代码来尝试解释。我感谢任何帮助。
我正在使用最新版本的汇合平台。
填充GlobalKTable的主题是从单个MySQL表中提取的:
Column Name/Type:
pk/bigint(20)
org_name/varchar(255)
orgId/varchar(10)
JDBCConnector配置为:
name=my-demo
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081
connection.url=jdbc:mysql://localhost:3306/reporting?user=root&password=XXX
table.whitelist=organisation
mode=incrementing
incrementing.column.name=pk
topic.prefix=my-
transforms=keyaddition
transforms.keyaddition.type=org.apache.kafka.connect.transforms.ValueToKey
transforms.keyaddition.fields=orgId
我正在使用命令行运行JDBC连接器:
connect-standalone /home/jim/platform/confluent/etc/schema-registry/connect-avro-standalone.properties /home/jim/prg/kafka/config/my.mysql.properties
这给了我一个名为my-organization的主题,这个主题关注orgId .....到目前为止一直很好! (注意,命名空间似乎不是由JDBCConnector设置的,但我不认为这是一个问题,但我不确定)
现在,代码。以下是我初始化和创建GlobalKTable的方法(显示相关代码):
final Map<String, String> serdeConfig =
Collections.singletonMap(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
schemaRegistryUrl);
final StreamsBuilder builder = new StreamsBuilder();
final SpecificAvroSerde<Organisation> orgSerde = new SpecificAvroSerde<>();
orgSerde.configure(serdeConfig, false);
// Create the GlobalKTable from the topic that was populated using the connect-standalone command line
final GlobalKTable<String, Organisation>
orgs =
builder.globalTable(ORG_TOPIC, Materialized.<String, Organisation, KeyValueStore<Bytes, byte[]>>as(ORG_STORE)
.withKeySerde(Serdes.String())
.withValueSerde(orgSerde));
生成Organisaton类的avro架构定义为:
{"namespace": "io.confluent.examples.streams.avro",
"type":"record",
"name":"Organisation",
"fields":[
{"name": "pk", "type":"long"},
{"name": "org_name", "type":"string"},
{"name": "orgId", "type":"string"}
]
}
注意:如上所述,使用单消息转换(SMT)操作将orgId设置为主题上的键。
所以,这就是GlobalKTable设置。
现在进行KStream设置(连接的右侧)。它具有与globalKTable相同的键(orgId)。我使用一个简单的驱动程序:
(用例是该主题将包含与每个组织相关的事件)
public class UploadGenerator {
public static void main(String[] args){
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
io.confluent.kafka.serializers.KafkaAvroSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
io.confluent.kafka.serializers.KafkaAvroSerializer.class);
props.put("schema.registry.url", "http://localhost:8081");
KafkaProducer producer = new KafkaProducer(props);
// This schema is also used in the consumer application or more specifically a class generated from it.
String mySchema = "{\"namespace\": \"io.confluent.examples.streams.avro\"," +
"\"type\":\"record\"," +
"\"name\":\"DocumentUpload\"," +
"\"fields\":[{\"name\":\"orgId\",\"type\":\"string\"}," +
"{\"name\":\"date\",\"type\":\"long\",\"logicalType\":\"timestamp-millis\"}]}";
Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(mySchema);
// Just using three fictional organisations with the following orgIds/keys
String[] ORG_ARRAY = {"002", "003", "004"};
long count = 0;
String key = ""; // key is the realm
while(true) {
count++;
try {
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
}
GenericRecord avroRecord = new GenericData.Record(schema);
int orgId = ThreadLocalRandom.current().nextInt(0, 2 + 1);
avroRecord.put("orgId",ORG_ARRAY[orgId]);
avroRecord.put("date",new Date().getTime());
key = ORG_ARRAY[orgId];
ProducerRecord<Object, Object> record = new ProducerRecord<>("topic_uploads", key, avroRecord);
try {
producer.send(record);
producer.flush();
} catch(SerializationException e) {
System.out.println("Exccccception was generated! + " + e.getMessage());
} catch(Exception el) {
System.out.println("Exception: " + el.getMessage());
}
}
}
}
因此,这会生成一个新事件,表示由orgId表示的组织的上载,但也专门设置在ProducerRecord中使用的键变量中。
以下是为这些事件设置KStream的代码:
final SpecificAvroSerde<DocumentUpload> uploadSerde = new SpecificAvroSerde<>();
uploadSerde.configure(serdeConfig, false);
// Get the stream of uploads
final KStream<String, DocumentUpload> uploadStream = builder.stream(UPLOADS_TOPIC, Consumed.with(Serdes.String(), uploadSerde));
// Debug output to see the contents of the stream
uploadStream.foreach((k, v) -> System.out.println("uploadStream: Key: " + k + ", Value: " + v));
// Note, I tried to re-key the stream with the orgId field (even though it was set as the key in the driver but same problem)
final KStream<String, DocumentUpload> keyedUploadStream = uploadStream.selectKey((key, value) -> value.getOrgId());
keyedUploadStream.foreach((k, v) -> System.out.println("keyedUploadStream: Key: " + k + ", Value: " + v));
// Java 7 form used as it was easier to put in debug statements
// OrgPK is just a helper class defined in the same class
KStream<String, OrgPk> joined = keyedUploadStream.leftJoin(orgs,
new KeyValueMapper<String, DocumentUpload, String>() { /* derive a (potentially) new key by which to lookup against the table */
@Override
public String apply(String key, DocumentUpload value) {
System.out.println("1. The key passed in is: " + key);
System.out.println("2. The upload realm passed in is: " + value.getOrgId());
return value.getOrgId();
}
},
// THIS IS NEVER CALLED WITH A join() AND WHEN CALLED WITH A leftJoin() HAS A NULL ORGANISATION
new ValueJoiner<DocumentUpload, Organisation, OrgPk>() {
@Override
public OrgPk apply(DocumentUpload leftValue, Organisation rightValue) {
System.out.println("3. Value joiner has been called...");
if( null == rightValue ) {
// THIS IS ALWAYS CALLED, SO THERE IS NEVER A "MATCH"
System.out.println(" 3.1. Orgnisation is NULL");
return new OrgPk(leftValue.getRealm(), 1L);
}
System.out.println(" 3.1. Org is OK");
// Never reaches here - this is the issue i.e. there is never a match
return new OrgPk(leftValue.getOrgId(), rightValue.getPk());
}
});
所以,上面的join(或leftJoin)从不匹配,即使两个键是相同的!这是主要问题。
最后,DocumentUpload的avro架构是:
{"namespace": "io.confluent.examples.streams.avro",
"type":"record",
"name":"DocumentUpload",
"fields":[
{"name": "orgId", "type":"string"},
{"name":"date", "type":"long", "logicalType":"timestamp-millis"}
]
}
所以,总结一下:
有人能帮助我吗?我想把头发拉出去试图解决这个问题。
答案 0 :(得分:0)
通过提供状态目录配置,我能够在Windows / Intellij上解决此问题 StreamsConfig.STATE_DIR_CONFIG