我有以下data.table
n = 100000
DT = data.table(customer_ID = 1:n,
married = rbinom(n, 1, 0.4),
coupon = rbinom(n, 1, 0.15))
我需要创建一个表格,总结已婚和未婚客户的总数,使用优惠券的客户数量,婚姻状况子组和最后一列,用于计算按婚姻状况为每个子群使用优惠券的客户百分比。
输出应该看起来像这样。
married Customers using Coupons Total Customers percent_usecoupon
1: 0 9036 59790 15.11290
2: 1 5943 40210 14.77991
我目前的代码效率非常低,而且我确信使用data.table有更好的语法,但我似乎无法找到它。我已经在下面复制了我当前的代码:
coupon_marital = DT[coupon == TRUE, .N, by = married][order(-N)] #Count of coupon use by marital status
total_marital = DT[, .N, by = married] #Total count by marital status
setnames(total_marital, "N", "Count") #Rename N to Count
coupon_marital = merge(coupon_marital, total_marital) #Merge data.tables
coupon_marital[, percent_usecoupon := N/Count*100, by = married] #Compute percentage coupon use
setnames(coupon_marital, c("N", "Count"), c("Customers using Coupons", "Total Customers")) #Rename N to Count
rm(total_marital)
print(coupon_marital)
我无法使用dplyr,只需要使用data.table。我对data.table语法相当新,非常感谢任何帮助!
答案 0 :(得分:3)
创建数据
set.seed(10)
n = 100000
DT = data.table(customer_ID = 1:n,
married = rbinom(n, 1, 0.4),
coupon = rbinom(n, 1, 0.15))
汇总数据
DT[, .(N.UseCoupon = sum(coupon)
,N.Total = .N
,Pct.UseCoupon = 100*mean(coupon)),
by = married]
# married N.UseCoupon N.Total Pct.UseCoupon
# 1: 0 8975 60223 14.90294
# 2: 1 5904 39777 14.84275