如何使用estimator.export_savemodel()保存TensorFlow模型

时间:2018-04-06 17:58:08

标签: tensorflow machine-learning deep-learning tensorflow-serving tensorflow-estimator

如何使用estimator.export_savedmode() 保存 TensorFlow模型

特别是,我应该把什么放在serving_input_receiver_fn()里面?

我已经创建了一个基于VGGNet架构的自定义估算器,我正在使用自己的图像并在图像上进行一些转换(您可以在_parse_function()中看到它们)。

我已阅读文档here,但我完全不确定要为我的代码编写什么(请参阅下文)。最终我想保存模型并使用TensorFlow服务。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
import os
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import scipy
from scipy import ndimage
import scipy.misc

tf.logging.set_verbosity(tf.logging.INFO)

def cnn_model_fn(features, labels, mode):
    """Model function for CNN."""
    # Input Layer
    input_layer = tf.reshape(features, [-1, 224, 224, 3])

    # Convolutional Layer #1
    conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=64,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    # Convolutional Layer #2
    conv2 = tf.layers.conv2d(
      inputs=conv1,
      filters=64,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    # Pooling Layer #1
    pool1 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

    # Convolutional Layer #3
    conv3 = tf.layers.conv2d(
      inputs=pool1,
      filters=128,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #4
    conv4 = tf.layers.conv2d(
      inputs=conv3,
      filters=128,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)

    # Convolutional Layer #5
    conv5 = tf.layers.conv2d(
      inputs=pool2,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #6
    conv6 = tf.layers.conv2d(
      inputs=conv5,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #7
    conv7 = tf.layers.conv2d(
      inputs=conv6,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    pool3 = tf.layers.max_pooling2d(inputs=conv7, pool_size=[2, 2], strides=2)

    # Convolutional Layer #8
    conv8 = tf.layers.conv2d(
      inputs=pool3,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #9
    conv9 = tf.layers.conv2d(
      inputs=conv8,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #10
    conv10 = tf.layers.conv2d(
      inputs=conv9,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    pool4 = tf.layers.max_pooling2d(inputs=conv10, pool_size=[2, 2], strides=2)

    # Convolutional Layer #11
    conv11 = tf.layers.conv2d(
      inputs=pool4,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #12
    conv12 = tf.layers.conv2d(
      inputs=conv11,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #12
    conv13 = tf.layers.conv2d(
      inputs=conv12,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    pool5 = tf.layers.max_pooling2d(inputs=conv13, pool_size=[2, 2], strides=2)
    # Dense Layer
    pool5_flat = tf.reshape(pool5, [-1, 7 * 7 * 512])
    dense1 = tf.layers.dense(inputs=pool5_flat, units=4096, activation=tf.nn.relu)
    dense2 = tf.layers.dense(inputs=dense1, units=4096, activation=tf.nn.relu)
    dense3 = tf.layers.dense(inputs=dense2, units=1024, activation=tf.nn.relu)

    dropout = tf.layers.dropout(
      inputs=dense3, rate=0.001, training=mode == tf.estimator.ModeKeys.TRAIN)

    logits1 = tf.layers.dense(inputs=dropout, units=2)
    logits2 = tf.layers.dense(inputs=dropout, units=4)

    predictions = {
        "classes1": tf.argmax(input=logits1, axis=1),
        "classes2": tf.argmax(input=logits2, axis=1),
        "probabilities1": tf.nn.softmax(logits1, name="softmax_tensor_1"),
        "probabilities2": tf.nn.softmax(logits2, name="softmax_tensor_2")
    }

    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Calculate Loss (for both TRAIN and EVAL modes)
    loss1 = tf.losses.sparse_softmax_cross_entropy(labels=labels[:,0], logits=logits1)
    loss2 = tf.losses.sparse_softmax_cross_entropy(labels=labels[:,1], logits=logits2)
    loss = loss1 + loss2

    # Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
        train_op = optimizer.minimize(
            loss=loss,
            global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {
        "accuracy1": tf.metrics.accuracy(
            labels=labels[:,0], predictions=predictions["classes1"]),
        "accuracy2": tf.metrics.accuracy(
            labels=labels[:,1], predictions=predictions["classes2"]),
        "precision1": tf.metrics.precision(labels=labels[:,0], predictions=predictions["classes1"]),
        "precision2": tf.metrics.precision(labels=labels[:,1], predictions=predictions["classes2"]),
        "recall1": tf.metrics.recall(labels=labels[:,0], predictions=predictions["classes1"]),
        "recall2": tf.metrics.recall(labels=labels[:,1], predictions=predictions["classes2"])
    }

    return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)

def _parse_function(filename, label):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_image(image_string)
    image_typecasted = tf.cast(image_decoded, tf.float32)
    image_reshaped = tf.reshape(image_typecasted, [-1, 224, 224, 3])
    return image_reshaped, label

def _parse_function(filename):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_image(image_string)
    image_typecasted = tf.cast(image_decoded, tf.float32)
    image_reshaped = tf.reshape(image_typecasted, [-1, 224, 224, 3])
    return image_reshaped

def stratified_train_test_split_():
    filenamelist = []
    labelslist = []
    DIRECTORY = 'path_to'

    for filename in os.listdir(DIRECTORY):
        fullfilename = DIRECTORY + filename
        if filename.endswith('.back.0.jpg'):
            #back image, original orientation
            filenamelist.append(fullfilename)
            temp = [0,0]
            labelslist.append(temp)

        elif filename.endswith('.back.90.jpg'):
            #back image, rotated clockwise 90
            filenamelist.append(fullfilename)
            temp = [0,1]
            labelslist.append(temp)

        elif filename.endswith('.back.180.jpg'):
            #back image, rotated clockwise 180
            filenamelist.append(fullfilename)
            temp = [0,2]
            labelslist.append(temp)

        elif filename.endswith('.back.270.jpg'):
            #back image, rotated clockwise 270
            filenamelist.append(fullfilename)
            temp = [0,3]
            labelslist.append(temp)

        elif filename.endswith('.front.0.jpg'):
            #front image, rotated clockwise 0
            filenamelist.append(fullfilename)
            temp = [1,0]
            labelslist.append(temp)

        elif filename.endswith('.front.90.jpg'):
            #front image, rotated clockwise 90
            filenamelist.append(fullfilename)
            temp = [1,1]
            labelslist.append(temp)

        elif filename.endswith('.front.180.jpg'):
            #front image, rotated clockwise 180
            filenamelist.append(fullfilename)
            temp = [1,2]
            labelslist.append(temp)

        elif filename.endswith('.front.270.jpg'):
            #front image, rotated clockwise 270
            filenamelist.append(fullfilename)
            temp = [1,3]
            labelslist.append(temp)

    X_train, X_test, y_train, y_test = train_test_split(filenamelist, labelslist, test_size=0.20, random_state=42, shuffle=True, stratify=labelslist)
    return X_train, X_test, y_train, y_test


def my_input_fn_train(X_train, y_train):
    filenames = tf.constant(X_train)
    labels = tf.constant(y_train)
    dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
    dataset = dataset.map(_parse_function)
    # # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(5000).repeat().batch(64)
    # # Build the Iterator, and return the read end of the pipeline.
    return dataset.make_one_shot_iterator().get_next()

def my_input_fn_test(X_test, y_test):
    filenames = tf.constant(X_test)
    labels = tf.constant(y_test)
    dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
    dataset = dataset.map(_parse_function)
    # # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(5000).repeat(1).batch(64)        
    # # Build the Iterator, and return the read end of the pipeline.
    return dataset.make_one_shot_iterator().get_next()

def my_input_fn_predict(filename):    
    filenames = tf.constant(filename)
    dataset = tf.data.Dataset.from_tensors((filenames))
    dataset = dataset.map(_parse_function)
    return dataset.make_one_shot_iterator().get_next()

def main(unused_argv):

    # Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
    model_fn=cnn_model_fn, 
    model_dir="path_to_model_directory",
    config = tf.estimator.RunConfig( save_checkpoints_steps=None, save_checkpoints_secs=600, save_summary_steps=5))
    # Set up logging for predictions
    tensors_to_log_1 = {"probabilities1": "softmax_tensor_1"}
    tensors_to_log_2 = {"probabilities2": "softmax_tensor_2"}
    logging_hook_1 = tf.train.LoggingTensorHook(
        tensors=tensors_to_log_1, every_n_iter=100)
    logging_hook_2 = tf.train.LoggingTensorHook(
        tensors=tensors_to_log_2, every_n_iter=100)

    #Splitting the train test split seperately
    X_train, X_test, y_train, y_test = stratified_train_test_split_()

    #Removed the training, testing and prediction calls.

    #Code for exporting the models using 
    def serving_input_receiver_fn():
      #????

    mnist_classifier.export_savedmodel(export_dir_base, serving_input_fn)

if __name__ == "__main__":
  tf.app.run()

2 个答案:

答案 0 :(得分:0)

是的,export_savedmode()就是您所需要的。

serving_input_receiver_fn应返回ServingInputReceiver,其中第一个参数指定要传递给模型的要素,第二个参数用于输入节点,此接收器希望默认情况下输入(引用文档)。

在你的情况下,它看起来像这样:

def serving_input_fn():

  serialized_tf_example = tf.placeholder(dtype=tf.string, shape=None, 
                                       name='input_example_tensor')
  receiver_tensors = {'examples': serialized_tf_example}
  features = tf.parse_example(serialized_tf_example, tf.placeholder(tf.float32, [None, 224, 224]))

  return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)

我建议您查看this thread中的答案,并使用thisthis示例作为参考。

最后但并非最不重要的是,考虑使用Keras进行POC。

答案 1 :(得分:0)

这是上述问题的答案,我能够解决所以我正在为需要它的人发布答案..

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
import os
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import scipy
from scipy import ndimage
import scipy.misc

tf.logging.set_verbosity(tf.logging.INFO)

# Our application logic will be added here



def cnn_model_fn(features, labels, mode):
    """Model function for CNN."""
    #tf.print("shape of features",features.shape)
    #print("type of feature ", type(features))
    #Added this for solving the issue
    features = features["feature"]
    features = tf.Print(features, [tf.shape(features), "shape of features before second reshape"], summarize=10)
    #tf.print("shape of labels ", labels.shape)

    # Input Layer
    input_layer = tf.reshape(features, [-1, 224, 224, 3])
    #print(type(input_layer))
    input_layer = tf.Print(input_layer, [tf.shape(input_layer), "shape of input_layer after second reshape"], summarize=10)
    #print("Successfully performed reshape operation")  
    # Convolutional Layer #1
    conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=64,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    # Convolutional Layer #2
    conv2 = tf.layers.conv2d(
      inputs=conv1,
      filters=64,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    #print("output of convolutional layer 1 : ",type(conv1))
    # Pooling Layer #1
    pool1 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

    #print(" Successfully done with 1st layer and shape is : ", pool1.shape)

    # Convolutional Layer #3
    conv3 = tf.layers.conv2d(
      inputs=pool1,
      filters=128,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #4
    conv4 = tf.layers.conv2d(
      inputs=conv3,
      filters=128,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    pool2 = tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)

    #print(" Successfully done with 2nd layer and shape is : ", pool2.shape)

    # Convolutional Layer #5
    conv5 = tf.layers.conv2d(
      inputs=pool2,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #6
    conv6 = tf.layers.conv2d(
      inputs=conv5,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #7
    conv7 = tf.layers.conv2d(
      inputs=conv6,
      filters=256,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    pool3 = tf.layers.max_pooling2d(inputs=conv7, pool_size=[2, 2], strides=2)

    #print(" Successfully done with 3rd layer and shape is : ", pool3.shape)

    # Convolutional Layer #8
    conv8 = tf.layers.conv2d(
      inputs=pool3,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #9
    conv9 = tf.layers.conv2d(
      inputs=conv8,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #10
    conv10 = tf.layers.conv2d(
      inputs=conv9,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)
    pool4 = tf.layers.max_pooling2d(inputs=conv10, pool_size=[2, 2], strides=2)

    #print(" Successfully done with 4th layer and shape is : ", pool4.shape)

    # Convolutional Layer #11
    conv11 = tf.layers.conv2d(
      inputs=pool4,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #12
    conv12 = tf.layers.conv2d(
      inputs=conv11,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)

    # Convolutional Layer #12
    conv13 = tf.layers.conv2d(
      inputs=conv12,
      filters=512,
      kernel_size=[3, 3],
      padding="same",
      activation=tf.nn.relu)


    pool5 = tf.layers.max_pooling2d(inputs=conv13, pool_size=[2, 2], strides=2)

    #print(" Successfully done with 5th layer and shape is : ", pool5.shape)

    # Dense Layer
    pool5_flat = tf.reshape(pool5, [-1, 7 * 7 * 512])
    dense1 = tf.layers.dense(inputs=pool5_flat, units=4096, activation=tf.nn.relu)
    dense2 = tf.layers.dense(inputs=dense1, units=4096, activation=tf.nn.relu)
    dense3 = tf.layers.dense(inputs=dense2, units=1024, activation=tf.nn.relu)
    #print(dense3.shape)
    dropout = tf.layers.dropout(
      inputs=dense3, rate=0.001, training=mode == tf.estimator.ModeKeys.TRAIN)
    #print(" Completed all the layers ")

    #This is the place where we will have two flows of different layers which are used for 
    # Logits Layer for Front Back Prediction 
    #logits = tf.layers.dense(inputs=dropout, units=2)

    logits1 = tf.layers.dense(inputs=dropout, units=2)
    logits2 = tf.layers.dense(inputs=dropout, units=4)


    #Modified this for solving the issue
    predictions1 = {
      # Generate predictions (for PREDICT and EVAL mode)
        "classes1": tf.argmax(input=logits1, axis=1),
        # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
        # `logging_hook`.
        "probabilities1": tf.nn.softmax(logits1, name="softmax_tensor_1"),
    }
    #Modified this for solving the issue
    predictions2 = {
      # Generate predictions (for PREDICT and EVAL mode)
        "classes2": tf.argmax(input=logits2, axis=1),
        # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
        # `logging_hook`.
        "probabilities2": tf.nn.softmax(logits2, name="softmax_tensor_2")
    }
    #Modified this for solving the issue
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions1, export_outputs={tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.ClassificationOutput(classes=tf.as_string(predictions1['classes1'])), 'class2': tf.estimator.export.ClassificationOutput(classes=tf.as_string(predictions2['classes2']))})


    # Calculate Loss (for both TRAIN and EVAL modes)
    loss1 = tf.losses.sparse_softmax_cross_entropy(labels=labels[:,0], logits=logits1)
    loss2 = tf.losses.sparse_softmax_cross_entropy(labels=labels[:,1], logits=logits2)
    loss1 = tf.Print(loss1, ["loss1 : ", loss1])
    loss2 = tf.Print(loss2, ["loss2 : ", loss2])
    loss = loss1 + loss2
    loss = tf.Print(loss, ["loss : ", loss])
    tf.summary.scalar('Loss1', loss1)
    tf.summary.scalar('Loss2', loss2)
    tf.summary.scalar('Loss', loss)

    #print("Loss of this step is : ",loss)
    # Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
        train_op = optimizer.minimize(
            loss=loss,
            global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
    #print("completed training")
    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {
        "accuracy1": tf.metrics.accuracy(
            labels=labels[:,0], predictions=predictions1["classes1"]),
        "accuracy2": tf.metrics.accuracy(
            labels=labels[:,1], predictions=predictions2["classes2"]),
        "precision1": tf.metrics.precision(labels=labels[:,0], predictions=predictions1["classes1"]),
        "precision2": tf.metrics.precision(labels=labels[:,1], predictions=predictions2["classes2"]),
        "recall1": tf.metrics.recall(labels=labels[:,0], predictions=predictions1["classes1"]),
        "recall2": tf.metrics.recall(labels=labels[:,1], predictions=predictions2["classes2"])
    }

    tf.summary.scalar('Accuracy_for_Front/Back', eval_metric_ops.get('accuracy1'))
    tf.summary.scalar('Accuracy_for_Orientation', eval_metric_ops.get('accuracy2'))
    tf.summary.scalar('Precision_for_Front/Back', eval_metric_ops.get('precision1'))
    tf.summary.scalar('Precision_for_Orientation', eval_metric_ops.get('precision2'))
    tf.summary.scalar('Recall_for_Front/Back', eval_metric_ops.get('recall1'))
    tf.summary.scalar('Recall_for_Orientation', eval_metric_ops.get('recall2'))
    #print("Accuracy of this step is : ", eval_metric_ops.get('accuracy1'))
    return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops )

def _parse_function(filename, label):
    filename = tf.Print(filename, [filename, " Names of files "])
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_image(image_string)
    image_typecasted = tf.cast(image_decoded, tf.float32)
    #print("type of the image : ",type(image_typecasted))
    #image_resized = tf.image.resize_images(image_decoded, [28, 28])
    image_typecasted = tf.Print(image_typecasted, [tf.shape(image_typecasted), " shape of image_typecasted before first reshape"],summarize=10)
    image_reshaped = tf.reshape(image_typecasted, [-1, 224, 224, 3])
    image_reshaped = tf.Print(image_reshaped, [tf.shape(image_reshaped), " shape of image_reshaped after first reshape"], summarize=10)
    return image_reshaped, label

def _parse_function(filename):
    image_string = tf.read_file(filename)
    image_decoded = tf.image.decode_image(image_string)
    image_typecasted = tf.cast(image_decoded, tf.float32)
    #print("type of the image : ",type(image_typecasted))
    #image_resized = tf.image.resize_images(image_decoded, [28, 28])
    image_reshaped = tf.reshape(image_typecasted, [-1, 224, 224, 3])

    return image_reshaped

def stratified_train_test_split_():
    filenamelist = []
    labelslist = []
    DIRECTORY = 'path_to_directory'

    for filename in os.listdir(DIRECTORY):
        fullfilename = DIRECTORY + filename
        if filename.endswith('.back.0.jpg'):
            #back image, original orientation
            filenamelist.append(fullfilename)
            temp = [0,0]
            labelslist.append(temp)

        elif filename.endswith('.back.90.jpg'):
            #back image, rotated clockwise 90
            filenamelist.append(fullfilename)
            temp = [0,1]
            labelslist.append(temp)

        elif filename.endswith('.back.180.jpg'):
            #back image, rotated clockwise 180
            filenamelist.append(fullfilename)
            temp = [0,2]
            labelslist.append(temp)

        elif filename.endswith('.back.270.jpg'):
            #back image, rotated clockwise 270
            filenamelist.append(fullfilename)
            temp = [0,3]
            labelslist.append(temp)

        elif filename.endswith('.front.0.jpg'):
            #front image, rotated clockwise 0
            filenamelist.append(fullfilename)
            temp = [1,0]
            labelslist.append(temp)

        elif filename.endswith('.front.90.jpg'):
            #front image, rotated clockwise 90
            filenamelist.append(fullfilename)
            temp = [1,1]
            labelslist.append(temp)

        elif filename.endswith('.front.180.jpg'):
            #front image, rotated clockwise 180
            filenamelist.append(fullfilename)
            temp = [1,2]
            labelslist.append(temp)

        elif filename.endswith('.front.270.jpg'):
            #front image, rotated clockwise 270
            filenamelist.append(fullfilename)
            temp = [1,3]
            labelslist.append(temp)


    #splitting the train test data
    #currently we are doing stratified sampling but still we are ignoring the 
    X_train, X_test, y_train, y_test = train_test_split(filenamelist, labelslist, test_size=0.20, random_state=42, shuffle=True, stratify=labelslist)

    #print("data is split into test and train set")


    # # Build the Iterator, and return the read end of the pipeline.
    return X_train, X_test, y_train, y_test


def my_input_fn_train(X_train, y_train):

    filenames = tf.constant(X_train)
    labels = tf.constant(y_train)
    dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
    dataset = dataset.map(_parse_function)
    # # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(5000).repeat().batch(64)

    # # Build the Iterator, and return the read end of the pipeline.
    return dataset.make_one_shot_iterator().get_next()

def my_input_fn_test(X_test, y_test):

    filenames = tf.constant(X_test)
    labels = tf.constant(y_test)
    dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
    dataset = dataset.map(_parse_function)
    # # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(5000).repeat(1).batch(64)

    # # Build the Iterator, and return the read end of the pipeline.
    return dataset.make_one_shot_iterator().get_next()

def my_input_fn_predict(filename):

    filenames = tf.constant(filename)
    dataset = tf.data.Dataset.from_tensors((filenames))
    dataset = dataset.map(_parse_function)

    return dataset.make_one_shot_iterator().get_next()


def main(unused_argv):

    # Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
        model_fn=cnn_model_fn, 
        model_dir="path_to_model_directory",
        config = tf.estimator.RunConfig( save_checkpoints_steps=None, save_checkpoints_secs=600, save_summary_steps=5))

    export_dir_base = 'path_to_folder'
    # Set up logging for predictions
    tensors_to_log_1 = {"probabilities1": "softmax_tensor_1"}
    tensors_to_log_2 = {"probabilities2": "softmax_tensor_2"}
    logging_hook_1 = tf.train.LoggingTensorHook(
        tensors=tensors_to_log_1, every_n_iter=100)
    logging_hook_2 = tf.train.LoggingTensorHook(
        tensors=tensors_to_log_2, every_n_iter=100)
    #print("Successfully created Estimator")





    #Added this for solving the issue
    def serving_input_receiver_fn():
        feature_spec = {'image/encoded': tf.FixedLenFeature(shape=[],
                                         dtype=tf.string)}

        serialized_tf_example = tf.placeholder(dtype=tf.string,
                                             name='input_example_tensor')
        receiver_tensors = {'examples': serialized_tf_example}

        features = tf.parse_example(serialized_tf_example, feature_spec)
        jpegs = features['image/encoded']
        images = tf.map_fn(_parse_function, jpegs, dtype=tf.float32)

        return tf.estimator.export.ServingInputReceiver(images, receiver_tensors)

    mnist_classifier.export_savedmodel(export_dir_base, serving_input_receiver_fn)



if __name__ == "__main__":
  tf.app.run()