根据条件掩盖pandas数据帧中的值

时间:2018-04-05 07:55:45

标签: python pandas dataframe nan

我需要替换数据帧中低于NaN的某个值的值。

例如,假设我需要替换NaN

的所有高于100的值
df = pd.DataFrame({'a':[1,250,480],
               'b':[60,51,101],
               'c':[15,689,1]})

会变成:

({'a':[1,NaN,NaN],
  'b':[60,51,NaN],
  'c':[15,NaN,1]})

这应该是最好的方法吗?

3 个答案:

答案 0 :(得分:2)

使用:

df = df.mask(df > 100)

df = df.where(df <= 100)

df = pd.DataFrame(np.where(df > 100, np.nan, df), index=df.index, columns=df.columns)
print (df)
     a     b     c
0  1.0  60.0  15.0
1  NaN  51.0   NaN
2  NaN   NaN   1.0

快速比较(取决于数据):

df = pd.concat([df] * 10000, ignore_index=True)

In [104]: %timeit pd.DataFrame(np.where(df > 100, np.nan, df), index=df.index, columns=df.columns)
The slowest run took 4.37 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 683 µs per loop

In [105]: %timeit df[:] = np.where(df.values <= 100, df.values, np.nan)
__main__:257: RuntimeWarning: invalid value encountered in less_equal
The slowest run took 17.24 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 957 µs per loop

In [106]: %timeit df.mask(df > 100)
1000 loops, best of 3: 1.56 ms per loop

In [107]: %timeit df.where(df <= 100)
The slowest run took 8.01 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.84 ms per loop

In [108]: %timeit df[df<100]
The slowest run took 5.57 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 1.89 ms per loop

答案 1 :(得分:2)

np.where进行就地更新;

df[:] = np.where(df.values <= 100, df.values, np.nan)
df

     a     b     c
0  1.0  60.0  15.0
1  NaN  51.0   NaN
2  NaN   NaN   1.0

答案 2 :(得分:1)

最短的一个是

df[df<100]