我终于接近完成了这个脚本,但我有2个小问题,我认为应该很容易清理。主要的一点是,包含合并数据的CSV都显示出来,但数据帧并不完美排列。另一个是玩家的节目[' 5452']当我更喜欢5452时。如果有人能帮助我,我会非常感激。
import requests
from random import choice
from bs4 import BeautifulSoup
import pandas as pd
from urllib.parse import urlparse, parse_qs
from functools import reduce
desktop_agents = ['Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_1) AppleWebKit/602.2.14 (KHTML, like Gecko) Version/10.0.1 Safari/602.2.14',
'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0']
url = "https://www.fangraphs.com/leaders.aspx?pos=np&stats=bat&lg=all&qual=0&type=c,4,6,5,23,9,10,11,13,12,21,22,60,18,35,34,50,40,206,207,208,44,43,46,45,24,26,25,47,41,28,110,191,192,193,194,195,196,197,200&season=2018&month=0&season1=2018&ind=0&team=0&rost=0&age=0&filter=&players=0&page=1_100000"
def random_headers():
return {'User-Agent': choice(desktop_agents),'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}
df3 = pd.DataFrame()
# get the url
page_request = requests.get(url,headers=random_headers())
soup = BeautifulSoup(page_request.text,"lxml")
table = soup.find_all('table')[11]
data = []
# pulls headings from the fangraphs table
column_headers = []
headingrows = table.find_all('th')
for row in headingrows[0:]:
column_headers.append(row.text.strip())
data.append(column_headers)
table_body = table.find('tbody')
rows = table_body.find_all('tr')
for row in rows:
cols = row.find_all('td')
cols = [ele.text.strip() for ele in cols]
data.append([ele for ele in cols[1:]])
ID = []
for tag in soup.select('a[href^=statss.aspx?playerid=]'):
link = tag['href']
query = parse_qs(link)
ID.append(query)
df1 = pd.DataFrame(data)
df1 = df1.rename(columns=df1.iloc[0])
df1 = df1.reindex(df1.index.drop(0))
df2 = pd.DataFrame(ID)
df3 = pd.concat([df1, df2], axis=1)
df3.to_csv("1.csv")
答案 0 :(得分:1)
请考虑以下问题来解决您的两个问题:
MISMATCH INDEX ISSUE :当您从 df1 中删除第一行时,索引从1运行到380.同时, df2的索引从0到379运行。由于pd.concat(..., axis=1)
与索引对齐,您将在记录中呈现不匹配。
要解决此问题,请使用.loc
过滤掉该行,然后运行.reset_index()
以将0呈现为379.具体来说,请替换:
df1 = df1.reindex(df1.index.drop(0))
带
df1 = df1.loc[1:].reset_index(drop=True)
嵌入式列表问题:假设您使用的是urlparse.parse_qs(),其输出会呈现列表值的字典。具体而言,query = parse_qs(link)
呈现{'playerid' : ['5452']}
。
df2 分配的漫长版本如下所示,其中包含传递到DataFrame
调用的词典列表:
df2 = pd.DataFrame([{'playerid' : ['5452']},
{'playerid' : ['1111']},
{'playerid' : ['9999']}])
要解决此问题,请重建您的词典列表,以使用嵌套列表/词典理解来获取列表值的第一项(即索引[0]
):
new_ID = [{'k':v[0]} for i in ID for k,v in i.items()]
df2 = pd.DataFrame(new_ID)
print(df2)
# playerid
# 0 5452
# 1 1111
# 2 9999