我有一个看起来像这样的数据框df
> g <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6)
> m <- c(1, NA, NA, NA, 3, NA, 2, 1, 3, NA, 3, NA, NA, 4, NA, NA, NA, 2, 1, NA, 7, 3, NA, 1)
> df <- data.frame(g, m)
其中g是类别(1到6),m是该类别中的值。 我已经设法通过以下方式找到每个类别的无NA值:
aggregate(m ~ g, data=df, function(x) {sum(!is.na(x))}, na.action = NULL)
g m
1 1 1
2 2 3
3 3 2
4 4 1
5 5 2
6 6 3
现在想要消除None-NA数为1的行(类别),并且只保留NA数为2及以上的行。
期望的结果将是
g m
5 2 3
6 2 NA
7 2 2
8 2 1
9 3 3
10 3 NA
11 3 3
12 3 NA
17 5 NA
18 5 2
19 5 1
20 5 NA
21 6 7
22 6 3
23 6 NA
24 6 1
每个g = 1且g = 4被消除,因为如图所示,每个类别中只有1个无NA:
任何建议:)?
答案 0 :(得分:0)
可以尝试基于dplyr
的解决方案。 group_by
上的g
将有助于获得所需的计数。
library(dplyr)
df %>% group_by(g) %>%
filter(!is.na(m)) %>%
filter(n() >=2) %>%
summarise(count = n())
#Result
# # A tibble: 6 x 2
# g count
# <dbl> <int>
# 1 2.00 3
# 2 3.00 2
# 3 5.00 2
# 4 6.00 3
答案 1 :(得分:0)
如果你想要基数R,那么我建议你使用你的聚合:
df2 <- aggregate(m ~ g, data=df, function(x) {sum(!is.na(x))}, na.action = NULL)
df[ ! df$g %in% df2$g[df2$m < 2], ]
# g m
# 5 2 3
# 6 2 NA
# 7 2 2
# 8 2 1
# 9 3 3
# 10 3 NA
# 11 3 3
# 12 3 NA
# 17 5 NA
# 18 5 2
# 19 5 1
# 20 5 NA
# 21 6 7
# 22 6 3
# 23 6 NA
# 24 6 1
如果您想使用dplyr
,或许
library(dplyr)
group_by(df, g) %>%
filter(sum(!is.na(m)) > 1) %>%
ungroup()
# # A tibble: 16 × 2
# g m
# <dbl> <dbl>
# 1 2 3
# 2 2 NA
# 3 2 2
# 4 2 1
# 5 3 3
# 6 3 NA
# 7 3 3
# 8 3 NA
# 9 5 NA
# 10 5 2
# 11 5 1
# 12 5 NA
# 13 6 7
# 14 6 3
# 15 6 NA
# 16 6 1