我在使用spaCy停止词时遇到问题。任何帮助,将不胜感激。我将TED谈话成绩单加载到pandas数据框
df['parsed_transcript'] = df['transcript'].apply(nlp)
#making a list of stop words to add
my_stop_words = ["thing", "people", "way", "year", " year " "time", "lot", "day"]
#adding the list to the stop words
for stopword in my_stop_words:
lexeme = nlp.vocab[stopword]
lexeme.is_stop = True
#filtering out stop words and all non noun words
def preprocess_texts(texts_as_csv_column):
#Takes a column from a pandas datafram and converts it into a list of nouns.
lemmas = []
for doc in texts_as_csv_column:
# Append the lemmas of all nouns that are not stop words
lemma = ([token.lemma_ for token in doc if token.pos_ == 'NOUN' and not token.is_stop])
lemmas.append(lemma)
return lemmas
现在,如果我算上一个单词" year"它减少了大约4,000,但它仍然显示超过8,000次。
count = 0
for row in df['list_of_words']:
for word in row:
if word == "year":
count +=1
print(count)
有些令牌被完全删除,有些已被部分删除,有些则根本没有。我尝试添加尾随和领先的空白区域,但这并没有帮助。关于我可能做错的任何想法?感谢
答案 0 :(得分:0)
代码看起来正确,只是您在year
中有两次my_stop_words
而在第二个实例和time
之间没有逗号,这将在文档中被解释为year time