import pandas as pd
import numpy as np
#load data
#data file and py file must be in same file path
df = pd.read_csv('cbp15st.txt', delimiter = ',', encoding = 'utf-8-
sig')
#define load data DataFrame columns
state = df['FIPSTATE']
industry = df['NAICS']
legal_form_of_organization = df['LFO']
suppression_flag = df['EMPFLAG']
total_establishment = df['EST']
establishment_1_4 = df['N1_4']
establishment_5_9 = df['N5_9']
establishment_10_19 = df['N10_19']
establishment_20_49 = df['N20_49']
establishment_50_99 = df['N50_99']
establishment_100_249 = df['N100_249']
establishment_250_499 = df['N250_499']
establishment_500_999 = df['N500_999']
establishment_1000_more = df['N1000']
#use df.loc to parse dataset for partiuclar value types
print(df.loc[df['EMPFLAG']=='A'], df.loc[df['FIPSTATE']==1],
df.loc[df['NAICS']=='------'])
目前使用df.loc从df列中查找特定值,但会读出包含所有这些值的列,而不仅仅是这些值(如a或vs和statement)
尝试找到一种方法对此设置多个限制,以仅获取符合条件x y和z的列读取。
上面的当前读数:
答案 0 :(得分:0)
您可以在指定多个过滤条件时使用&
运算符,例如:
df1 = df.loc[(df['EMPFLAG']=='A']) & (df['FIPSTATE']==1) & (df['NAICS']=='------')]
print(df1)