我的数据框的点包括点的x,y和z坐标以及“count”,每个数据点的数字介于1和187之间。 我想将“count”与颜色渐变相关联,其中1表示颜色为绿色,187表示红色,然后用x,y和z坐标绘制数据点的散点图,其中每个数据点的颜色都被编码“计数”的信息。 我发现颜色渐变的代码非常混乱,你能帮我吗?
编辑:zelusp完全回答了我的问题,谢谢。EDIT1:我想知道我是否应该写一个单独的问题,但由于它是关于相同的代码段,我可以找到答案只是编辑上一个问题。 最近我改变了我的笔记本电脑,并在我的新机器上安装了Ubuntu 18.04。这段代码在Ubuntu 16.04上完美运行,但在我的新机器上不起作用。 我的代码是:
cmap = plt.cm.rainbow
norm = mpl.colors.Normalize(vmin=np.min(df3.h_count), vmax=np.max(df3.h_count))
fig=plt.figure()
ax1=fig.add_subplot(111, projection='3d')
ax1.scatter(df3.zm_bin, df3.sfr_bin, 12.+np.log10(df3.medijana), s=10, c=cmap(norm(df3.h_count)), marker='o')
ax1.set_xlim(8,12.5)
ax1.set_xlabel('Log(Mz)')
ax1.set_ylabel('LogSFR') #treba invertovati
ax1.set_zlabel('12+log(Z)')
ax1.invert_yaxis()
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
fig.colorbar(sm)
我得到的错误是:
Traceback (most recent call last):
File "load_subhalos.py", line 233, in <module>
ax1.scatter(df3.zm_bin, df3.sfr_bin, 12.+np.log10(df3.medijana), s=10, c=cmap(norm(df3.h_count)), marker='o')
File "/usr/local/lib/python2.7/dist-packages/matplotlib/colors.py", line 938, in __call__
result, is_scalar = self.process_value(value)
File "/usr/local/lib/python2.7/dist-packages/matplotlib/colors.py", line 924, in process_value
result = np.ma.array(data, mask=mask, dtype=dtype, copy=True)
File "/usr/local/lib/python2.7/dist-packages/numpy/ma/core.py", line 6358, in array
ndmin=ndmin, shrink=shrink, order=order)
File "/usr/local/lib/python2.7/dist-packages/numpy/ma/core.py", line 2784, in __new__
order=order, subok=True, ndmin=ndmin)
TypeError: float() argument must be a string or a number
我没有更改代码中的任何内容,唯一的变化是新机器和操作系统。你知道为什么我有这个问题吗?
答案 0 :(得分:2)
我建议您浏览matplotlib上的这些帖子:
YlOrRd
彩色地图,因为它会更容易阅读cmap
和norm
变量的使用以及cmap(norm(df.c.values))
中如何使用它们。考虑到这一点,我做了以下内容:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
from mpl_toolkits.mplot3d import Axes3D
#%% Generate mock data
number_of_datapoints = 30
x = np.random.rand(number_of_datapoints)
y = np.random.rand(number_of_datapoints)
z = np.random.rand(number_of_datapoints)
count_min = 1
count_max = 187
data = np.random.randint(count_min, count_max, number_of_datapoints) # these are your counts
#%% Create Color Map
colormap = plt.get_cmap("YlOrRd")
norm = matplotlib.colors.Normalize(vmin=min(data), vmax=max(data))
#%% 3D Plot
fig = plt.figure()
ax3D = fig.add_subplot(111, projection='3d')
ax3D.scatter(x, y, z, s=10, c=colormap(norm(data)), marker='o')
plt.show()
您可能也对colorspacious
感兴趣