任何人都可以给我一个建议:运行以下代码时,会发生错误(我使用TF作为后端)
inputs = Input(shape=(100, 1, ))
lstm = LSTM(3, return_sequences=True)(inputs)
outputs = 2*lstm[:, :, 0] + 5*lstm[:, :, 1] + 10*lstm[:, :, 2]
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(x, y)
错误是
TypeError:模型的输出张量必须是Keras张量。找到:Tensor(“add_1:0”,shape =(?,?),dtype = float32)
答案 0 :(得分:0)
如果我正确理解了这个问题,
outputs = Lambda(lambda x: 2*x[:, :, 0] + 5*x[:, :, 1] + 10*x[:, :, 2])(lstm)
应该做你想要的。
In [94]: model = Model(inputs=inputs, outputs=outputs)
In [95]: model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_5 (InputLayer) (None, 100, 1) 0
_________________________________________________________________
lstm_12 (LSTM) (None, 100, 3) 60
_________________________________________________________________
lambda_4 (Lambda) (None, 100) 0
=================================================================
Total params: 60
Trainable params: 60
Non-trainable params: 0
例如,只需添加两个输入,
In [143]: inputs = Input(shape=(2,))
In [144]: outputs = Lambda(lambda x: x[:, 0] + x[:, 1])(inputs)
In [145]: model = Model(inputs, outputs)
In [146]: model.predict(np.array([[1, 5], [2, 6]]))
Out[146]: array([ 6., 8.], dtype=float32)