我有一个蒙版的1D数据数组,其中包含我已屏蔽的nan值,现在打印为 - 。我希望将此数组拟合为高斯数,并使用拟合的均值和标准差创建直方图。我已经尝试过辣.stats.fit,但那不起作用(卑鄙和std刚刚返回' nan')。然后我追求辣.mstats,但它看起来没有合适的功能。
是否有一个模块可以将高斯拟合到蒙板数组并输出均值和标准?
编辑:这是我的代码所以
def createRmsMatrix( self ):
'''
Creates an array of RMS values for each profile in one file.
'''
# Initialize RMS table of zeroes
rmsMatrix = np.zeros( ( self.nSub, self.nChan ), dtype = float )
# Loop over the time and frequency indices
for time in np.arange( self.nSub ):
for frequency in np.arange( self.nChan ):
# Create a mask along the bin space
mask = utils.binMask( self.data[time][frequency], 0.55 )
#print(mask)
rmsMatrix[time][frequency] = mu.rootMeanSquare( self.data[time][frequency][mask == 0] )
# Mask the nan values in the array
rmsMatrix = np.ma.array( rmsMatrix, mask = np.isnan( rmsMatrix ) )
print( "Root Mean Square matrix created..." )
return rmsMatrix
我的主要功能部分称之为:
# Return the array of RMS values for each profile
self.rmsArray = self.createRmsMatrix()
# Reshape RMS array to be linear and store in a new RMS array
self.linearRmsArray = np.reshape( self.rmsArray, ( self.nChan * self.nSub ) )
# Best fit of data using a Gaussian fit
mu, sigma = norm.fit( self.linearRmsArray )
# Creates the histogram
n, bins, patches = self.histogramPlot( self.linearRmsArray, mu, sigma, 'Root Mean Squared', 'Frequency Density', True )
histogramPlot对我来说只是一个方便的matplotlib组织者,我也会发布:
def histogramPlot( self, data, mean, stdDev, xAxis='x-axis', yAxis='y-axis', showPlot = False ):
'''
Plots and returns a histogram of some linear data using matplotlib
and fits a Gaussian centered around the mean with a spread of stdDev.
Use this function to set the x and y axis names.
Can also toggle showing of the histogram in this function.
'''
# Plot the histogram
n, bins, patches = plt.hist( self.linearRmsArray, bins=self.nChan, normed=True )
# Add a 'best fit' normal distribution line
xPlot = np.linspace( ( mean - (4*stdDev) ), ( mean + (4*stdDev) ), 1000 )
yPlot = mlab.normpdf( xPlot, mean, stdDev )
l = plt.plot(xPlot, yPlot, 'r--', linewidth=2)
# Format axes
plt.ylabel( yAxis )
plt.xlabel( xAxis )
#plt.title(r'$\mathrm{Histogram\ of\ data:}\ \mu=%.3f,\ \sigma=%.3f$' %(mu, sigma))
plt.title(r'$\mu=%.3f,\ \sigma=%.3f$' %(mean, stdDev))
plt.grid(True)
if showPlot == True:
plt.show()
return n, bins, patches
答案 0 :(得分:2)
您试图使用scipy.norm.fit
来为数据拟合正态分布,这意味着您的输入是应该是来自正态分布的随机样本的值集合。在这种情况下,均值和标准的最大似然估计。开发。只是数据的样本均值和样本标准差。对于包含nan
的数据,您可以在调用nan
之前删除scipy.norm.fit()
,也可以直接使用numpy.nanmean
和numpy.nanstd
计算这些数据:
est_mean = np.nanmean(data)
est_stddev = np.nanstd(data)
例如,
In [18]: import numpy as np
In [19]: from scipy.stats import norm
In [20]: x = np.array([1, 4.5, np.nan, 3.3, 10.0, 4.1, 8.5, 17.1, np.nan])
In [21]: np.nanmean(x), np.nanstd(x)
Out[21]: (6.9285714285714288, 5.0366412520687653)
In [22]: norm.fit(x[np.isfinite(x)])
Out[22]: (6.9285714285714288, 5.0366412520687653)
请注意,x[np.isfinite(x)]
是x
中不是nan
或inf
的值数组。
如果你有一个蒙面数组,你可以使用mean
和std
方法:
In [36]: mx = np.ma.masked_array(x, np.isnan(x))
In [37]: mx
Out[37]:
masked_array(data = [1.0 4.5 -- 3.3 10.0 4.1 8.5 17.1 --],
mask = [False False True False False False False False True],
fill_value = 1e+20)
In [38]: mx.mean(), mx.std()
Out[38]: (6.9285714285714288, 5.0366412520687653)