我的特征向量中有整数类型的特征,NLTK NaiveBayesClassifier
将其视为名义值。
上下文
我正在尝试使用n-gram构建语言分类器。例如,二元组'在英语中比在法语中更常见。
对于我的训练集中的每个句子,我提取一个特征如下:bigram(th): 5
其中5(示例)表示二元组的次数'出现在句子里。
当我尝试使用这样的功能构建分类器并检查信息最丰富的功能时,我意识到分类器没有意识到这些功能是线性的。例如,它可能会将bigram(ea): 4
视为法语,将bigram(ea): 5
视为英语,将bigram(ea): 6
视为法语。这是非常随意的,并不代表一个二元组在英语或法语中更常见的逻辑。这就是我需要对整数进行处理的原因。
更多想法
当然,我可以使用has(th): True
等功能替换这些功能。但是,我认为这是一个坏主意,因为两个法语句子都有一个例子。和一个英文句子有5个实例'将具有无法区分它们的功能has(th): True
。
我也找到this link,但它没有给我答案。
修改
功能提取器
我的功能提取器如下所示:
def get_ngrams(word, n):
ngrams_list = []
ngrams_list.append(list(ngrams(word, n, pad_left=True, pad_right=True, left_pad_symbol='_', right_pad_symbol='_')))
ngrams_flat_tuples = [ngram for ngram_list in ngrams_list for ngram in ngram_list]
format_string = ''
for i in range(0, n):
format_string += ('%s')
ngrams_list_flat = [format_string % ngram_tuple for ngram_tuple in ngrams_flat_tuples]
return ngrams_list_flat
# Feature extractor
def get_ngram_features(sentence_tokens):
features = {}
# Unigrams
for word in sentence_tokens:
ngrams = get_ngrams(word, 1)
for ngram in ngrams:
features[f'char({ngram})'] = features.get(f'char({ngram})', 0) + 1
# Bigrams
for word in sentence_tokens:
ngrams = get_ngrams(word, 2)
for ngram in ngrams:
features[f'bigram({ngram})'] = features.get(f'bigram({ngram})', 0) + 1
# Trigrams
for word in sentence_tokens:
ngrams = get_ngrams(word, 3)
for ngram in ngrams:
features[f'trigram({ngram})'] = features.get(f'trigram({ngram})', 0) + 1
# Quadrigrams
for word in sentence_tokens:
ngrams = get_ngrams(word, 4)
for ngram in ngrams:
features[f'quadrigram({ngram})'] = features.get(f'quadrigram({ngram})', 0) + 1
return features
功能提取示例
get_ngram_features(['test', 'sentence'])
返回:
{'char(c)': 1,
'char(e)': 4,
'char(n)': 2,
'char(s)': 2,
'char(t)': 3,
'bigram(_s)': 1,
'bigram(_t)': 1,
'bigram(ce)': 1,
'bigram(e_)': 1,
'bigram(en)': 2,
'bigram(es)': 1,
'bigram(nc)': 1,
'bigram(nt)': 1,
'bigram(se)': 1,
'bigram(st)': 1,
'bigram(t_)': 1,
'bigram(te)': 2,
'quadrigram(_sen)': 1,
'quadrigram(_tes)': 1,
'quadrigram(ence)': 1,
'quadrigram(ente)': 1,
'quadrigram(est_)': 1,
'quadrigram(nce_)': 1,
'quadrigram(nten)': 1,
'quadrigram(sent)': 1,
'quadrigram(tenc)': 1,
'quadrigram(test)': 1,
'trigram(_se)': 1,
'trigram(_te)': 1,
'trigram(ce_)': 1,
'trigram(enc)': 1,
'trigram(ent)': 1,
'trigram(est)': 1,
'trigram(nce)': 1,
'trigram(nte)': 1,
'trigram(sen)': 1,
'trigram(st_)': 1,
'trigram(ten)': 1,
'trigram(tes)': 1}
答案 0 :(得分:1)
为此目的,更容易使用其他库。使用自定义分析器(例如,sklearn
与CountVectorizer(analyzer=preprocess_text)
进行此类操作会更容易。 from io import StringIO
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from nltk import everygrams
def sent_process(sent):
return [''.join(ng) for ng in everygrams(sent.replace(' ', '_ _'), 1, 4)
if ' ' not in ng and '\n' not in ng and ng != ('_',)]
sent1 = "The quick brown fox jumps over the lazy brown dog."
sent2 = "Mr brown jumps over the lazy fox."
sent3 = 'Mr brown quickly jumps over the lazy dog.'
sent4 = 'The brown quickly jumps over the lazy fox.'
with StringIO('\n'.join([sent1, sent2])) as fin:
# Override the analyzer totally with our preprocess text
count_vect = CountVectorizer(analyzer=sent_process)
count_vect.fit_transform(fin)
count_vect.vocabulary_
train_set = count_vect.fit_transform([sent1, sent2])
# To train the classifier
clf = MultinomialNB()
clf.fit(train_set, ['pos', 'neg'])
test_set = count_vect.transform([sent3, sent4])
clf.predict(test_set)
例如:
char(...)
首先,确实没有必要明确标注unigram(...)
,bigram(...)
,trigram(...)
,quadrigram(...)
和from collections import Counter
from nltk import ngrams, word_tokenize
features = Counter(ngrams(word_tokenize('This is a something foo foo bar foo foo sentence'), 2))
部分。
功能集只是字典键,您可以使用实际的ngram元组作为键,例如
>>> features
Counter({('This', 'is'): 1,
('a', 'something'): 1,
('bar', 'foo'): 1,
('foo', 'bar'): 1,
('foo', 'foo'): 2,
('foo', 'sentence'): 1,
('is', 'a'): 1,
('something', 'foo'): 1})
[OUT]:
everygrams()
对于多个订单的ngrams,您可以使用from nltk import everygrams
sent = word_tokenize('This is a something foo foo bar foo foo sentence')
Counter(everygrams(sent, 1, 4))
,例如
Counter({('This',): 1,
('This', 'is'): 1,
('This', 'is', 'a'): 1,
('This', 'is', 'a', 'something'): 1,
('a',): 1,
('a', 'something'): 1,
('a', 'something', 'foo'): 1,
('a', 'something', 'foo', 'foo'): 1,
('bar',): 1,
('bar', 'foo'): 1,
('bar', 'foo', 'foo'): 1,
('bar', 'foo', 'foo', 'sentence'): 1,
('foo',): 4,
('foo', 'bar'): 1,
('foo', 'bar', 'foo'): 1,
('foo', 'bar', 'foo', 'foo'): 1,
('foo', 'foo'): 2,
('foo', 'foo', 'bar'): 1,
('foo', 'foo', 'bar', 'foo'): 1,
('foo', 'foo', 'sentence'): 1,
('foo', 'sentence'): 1,
('is',): 1,
('is', 'a'): 1,
('is', 'a', 'something'): 1,
('is', 'a', 'something', 'foo'): 1,
('sentence',): 1,
('something',): 1,
('something', 'foo'): 1,
('something', 'foo', 'foo'): 1,
('something', 'foo', 'foo', 'bar'): 1})
[OUT]:
def sent_vectorizer(sent):
return [''.join(ng) for ng in everygrams(sent.replace(' ', '_ _'), 1, 4)
if ' ' not in ng and ng != ('_',)]
Counter(sent_vectorizer('This is a something foo foo bar foo foo sentence'))
提取所需功能的简洁方法:
Counter({'o': 9, 's': 4, 'e': 4, 'f': 4, '_f': 4, 'fo': 4, 'oo': 4, 'o_': 4, '_fo': 4, 'foo': 4, 'oo_': 4, '_foo': 4, 'foo_': 4, 'i': 3, 'n': 3, 'h': 2, 'a': 2, 't': 2, 'hi': 2, 'is': 2, 's_': 2, '_s': 2, 'en': 2, 'is_': 2, 'T': 1, 'm': 1, 'g': 1, 'b': 1, 'r': 1, 'c': 1, 'Th': 1, '_i': 1, '_a': 1, 'a_': 1, 'so': 1, 'om': 1, 'me': 1, 'et': 1, 'th': 1, 'in': 1, 'ng': 1, 'g_': 1, '_b': 1, 'ba': 1, 'ar': 1, 'r_': 1, 'se': 1, 'nt': 1, 'te': 1, 'nc': 1, 'ce': 1, 'Thi': 1, 'his': 1, '_is': 1, '_a_': 1, '_so': 1, 'som': 1, 'ome': 1, 'met': 1, 'eth': 1, 'thi': 1, 'hin': 1, 'ing': 1, 'ng_': 1, '_ba': 1, 'bar': 1, 'ar_': 1, '_se': 1, 'sen': 1, 'ent': 1, 'nte': 1, 'ten': 1, 'enc': 1, 'nce': 1, 'This': 1, 'his_': 1, '_is_': 1, '_som': 1, 'some': 1, 'omet': 1, 'meth': 1, 'ethi': 1, 'thin': 1, 'hing': 1, 'ing_': 1, '_bar': 1, 'bar_': 1, '_sen': 1, 'sent': 1, 'ente': 1, 'nten': 1, 'tenc': 1, 'ence': 1})
[OUT]:
NaiveBayesClassifier
不幸的是,没有简单的方法来改变NLTK中+=1
工作方式的硬编码方式。
如果我们查看https://www.kaggle.com/alvations/basic-nlp-with-nltk,幕后 NLTK已经计算了功能中的出现次数。
但是请注意,它计算文档频率,而不是术语频率,即在这种情况下,无论元素出现在文档中多少次,它都算作一个。没有更改NLTK代码以添加每个功能的价值,因为它是硬编码的LINQ
,https://github.com/nltk/nltk/blob/develop/nltk/classify/naivebayes.py#L185