我有一个类似于以下
的现有数据框(coffee_directions_df)coffee_directions_df
Utterance Frequency
Directions to Starbucks 1045
Directions to Tullys 1034
Give me directions to Tullys 986
Directions to Seattles Best 875
Show me directions to Dunkin 812
Directions to Daily Dozen 789
Show me directions to Starbucks 754
Give me directions to Dunkin 612
Navigate me to Seattles Best 498
Display navigation to Starbucks 376
Direct me to Starbucks 201
DF显示人们的言语和话语的频率。
即,“前往星巴克的路线”被发出1045次。
我试图找出如何将coffee_directions_df.Utterance
列中的“Starbucks”,“Tullys”,“Seattles Best”等类似单词替换成一个字符串,例如“Coffee”。我已经看到了类似的答案,提出了一个字典,例如以下,但我还没有成功。
{'Utterance':['Starbucks','Tullys','Seattles Best'],
'Combi_Utterance':['Coffee','Coffee','Coffee','Coffee']}
{'Utterance':['Dunkin','Daily Dozen'],
'Combi_Utterance':['Donut','Donut']}
{'Utterance':['Give me','Show me','Navigate me','Direct me'],
'Combi_Utterance':['V_me','V_me','V_me','V_me']}
所需的输出如下:
coffee_directions_df
Utterance Frequency Combi_Utterance
Directions to Starbucks 1045 Directions to Coffee
Directions to Tullys 1034 Directions to Coffee
Give me directions to Tullys 986 V_me to Coffee
Directions to Seattles Best 875 Directions to Coffee
Show me directions to Dunkin 812 V_me to Donut
Directions to Daily Dozen 789 Directions to Donut
Show me directions to Starbucks 754 V_me to Coffee
Give me directions to Dunkin 612 V_me to Donut
Navigate me to Seattles Best 498 V_me to Coffee
Display navigation to Starbucks 376 Display navigation to Coffee
Direct me to Starbucks 201 V_me to Coffee
最终,我希望能够使用我必须生成最终输出的代码。
df = (df.set_index('Frequency')['Utterance']
.str.split(expand=True)
.stack()
.reset_index(name='Words')
.groupby('Words', as_index=False)['Frequency'].sum()
)
print (df)
Words Frequency
0 Directions 6907
1 V_me 3863
2 Donut 2213
3 Coffee 5769
4 Other 376
谢谢!
答案 0 :(得分:1)
以下是一种方法。根据您之前的问题,我选择使用mAWSLambdaClient.InvokeAsync(lambdaRequest)
代替func segueToSecondViewController() {
let secondViewController = SecondViewController()
self.present(secondViewController, animated: true, completion: nil)
}
来计算您的计数逻辑。
所需的输入采用映射字典collections.Counter
的形式。我们将此应用于pandas
系列中字符串的子字符串。
rep_dict
<强>结果强>
df['Utterance']