K折交叉验证的准确度排序与个体模型的准确度排序不一致

时间:2018-03-31 05:51:44

标签: python cross-validation precision-recall auc

这是我第一次运行k-fold交叉验证,我对从输出中看到的现象感到困惑。基本上,5倍交叉验证始终为模型8(Adaboost分类器)和模型9(梯度增强分类器)提供最高的准确度分数,如下所示。然而,当我使用20%的数据集作为测试数据单独运行这些ML模型时,模型7(随机森林分类器)总是根据混淆矩阵和AUC在所有5个模型中产生最高精度。我最初的期望是,如果我单独运行ML模型,具有高k倍交叉验证精度的ML模型也应该返回高精度。这似乎不是这种情况。有人可以向我解释为什么我会看到这种差异吗?

这些是我用来训练数据的ML模型:

model6 = DecisionTreeClassifier()
model7 = RandomForestClassifier(n_estimators=300)
model8 = AdaBoostClassifier(n_estimators=300)
model9 = GradientBoostingClassifier(n_estimators=300, learning_rate=1.0, max_depth=1, random_state=0)
model10 = KNeighborsClassifier(n_neighbors=5)

这是5折CV和个人ML模型的完整代码:

X_train, X_test, Y_train, Y_test = train_test_split(whole_data_input, whole_data_output, test_size=0.2)
X_train.reset_index(inplace=True)
#To remove the index column:
X_train.drop(['index'],axis=1,inplace=True)

X_test.reset_index(inplace=True)
#To remove the index column:
X_test.drop(['index'],axis=1,inplace=True)

Y_train.reset_index(inplace=True)
#To remove the index column:
Y_train.drop(['index'],axis=1,inplace=True)

Y_test.reset_index(inplace=True)
#To remove the index column:
Y_test.drop(['index'],axis=1,inplace=True)

warnings.filterwarnings('ignore')

model6 = DecisionTreeClassifier()
model7 = RandomForestClassifier(n_estimators=300)
model8 = AdaBoostClassifier(n_estimators=300)
model9 = GradientBoostingClassifier(n_estimators=300, 
learning_rate=1.0,max_depth=1, random_state=0)
model10 = KNeighborsClassifier(n_neighbors=5)

model6.fit(X_train, Y_train)
model7.fit(X_train, Y_train)
model8.fit(X_train, Y_train)
model9.fit(X_train, Y_train)
model10.fit(X_train, Y_train)

# Perform 5-fold cross validation across different models:

#Here I am calling 'whole_data['label'] instead of the 'whole_data[['label']] I created earlier because cross validation only works with this data shape:
whole_data_output=whole_data['label']    

print('THE FOLLOWING OUTPUT REPRESENT ACCURACIES OF 5-FOLD VALIDATIONS FROM VARIOUS ML MODELS:')
print()
scores = cross_val_score(model6, whole_data_input, whole_data_output, cv=5)
print('Cross-validated scores for model6, Decision Tree Classifier, is:' + str(scores))

print()
scores = cross_val_score(model7, whole_data_input, whole_data_output, cv=5)
print('Cross-validated scores for model7, Random Forest Classifier, is:' + str(scores))

print()
scores = cross_val_score(model8, whole_data_input, whole_data_output, cv=5)
print('Cross-validated scores for model8, Adaboost Classifier, is:' + str(scores))

print()
scores = cross_val_score(model9, whole_data_input, whole_data_output, cv=5)
print('Cross-validated scores for model9, Gradient Boosting Classifier, is:' + str(scores))

print()
scores = cross_val_score(model10, whole_data_input, whole_data_output, cv=5)
print('Cross-validated scores for model10, K Neighbors Classifier, is:' + str(scores))

print('THE FOLLOWING OUTPUT REPRESENT RESULTS FROM VARIOUS ML MODELS:')
print()

result6 = model6.predict(X_test)
result7 = model7.predict(X_test)
result8 = model8.predict(X_test)
result9 = model9.predict(X_test)
result10 = model10.predict(X_test)

from sklearn.metrics import classification_report

print('Classification report for model 6, decision tree classifier, is: ')
print(confusion_matrix(Y_test,result6))
print()
print(classification_report(Y_test,result6))
print()
print("Area under curve (auc) of model6 is: ", metrics.roc_auc_score(Y_test, result6)) 
print()

print('Classification report for model 7, random forest classifier, is: ')
print(confusion_matrix(Y_test,result7))
print()
print(classification_report(Y_test,result7))
print()
print("Area under curve (auc) of model7 is: ", metrics.roc_auc_score(Y_test, result7)) 
print()

print('Classification report for model 8, adaboost classifier, is: ')
print(confusion_matrix(Y_test,result8))
print()
print(classification_report(Y_test,result8))
print()
print("Area under curve (auc) of model8 is: ", metrics.roc_auc_score(Y_test, result8)) 
print()

print('Classification report for model 9, gradient boosting classifier, is: ')
print(confusion_matrix(Y_test,result9))
print()
print(classification_report(Y_test,result9))
print()
print("Area under curve (auc) of model9 is: ", metrics.roc_auc_score(Y_test, result9)) 
print()

print('Classification report for model 10, K neighbors classifier, is: ')
print(confusion_matrix(Y_test,result10))
print()
print(classification_report(Y_test,result10))
print()
print("Area under curve (auc) of model10 is: ", metrics.roc_auc_score(Y_test, result10)) 
print()

以下各种ML模型的5折交叉验证的输出表示准确度:

Cross-validated scores for model6, Decision Tree Classifier, is:[ 0.61364665  0.75754735  0.77046902]

Cross-validated scores for model7, Random Forest Classifier, is:[ 0.62463637  0.79326395  0.8073181 ]

Cross-validated scores for model8, Adaboost Classifier, is:[ 0.64916931  0.81960696  0.84196916]

Cross-validated scores for model9, Gradient Boosting Classifier, is:[ 0.64910466  0.82177258  0.83909235]

Cross-validated scores for model10, K Neighbors Classifier, is:[ 0.61180425  0.75412115  0.73012897]

以下输出代表的结果来自各种ML模型:

Classification report for model 6, decision tree classifier, is: 
[[6975 1804]
[1893 7891]]

         precision    recall  f1-score   support

     -1       0.79      0.79      0.79      8779
      1       0.81      0.81      0.81      9784
avg / total       0.80      0.80      0.80     18563

Area under curve (auc) of model6 is:  0.800515237805

Classification report for model 7, random forest classifier, is: 
[[6883 1896]
[1216 8568]]

         precision    recall  f1-score   support

     -1       0.85      0.78      0.82      8779
      1       0.82      0.88      0.85      9784
avg / total       0.83      0.83      0.83     18563

Area under curve (auc) of model7 is:  0.829872762782

Classification report for model 8, adaboost classifier, is: 
[[5851 2928]
[ 891 8893]]

         precision    recall  f1-score   support

     -1       0.87      0.67      0.75      8779
      1       0.75      0.91      0.82      9784
avg / total       0.81      0.79      0.79     18563

Area under curve (auc) of model8 is:  0.787704885721

Classification report for model 9, gradient boosting classifier, is: 
[[5905 2874]
[ 918 8866]]

         precision    recall  f1-score   support

     -1       0.87      0.67      0.76      8779
      1       0.76      0.91      0.82      9784
avg / total       0.81      0.80      0.79     18563

Area under curve (auc) of model9 is:  0.789400603089

Classification report for model 10, K neighbors classifier, is: 
[[6467 2312]
[1666 8118]]

         precision    recall  f1-score   support

     -1       0.80      0.74      0.76      8779
      1       0.78      0.83      0.80      9784

avg / total       0.79      0.79      0.79     18563

Area under curve (auc) of model10 is:  0.783183129908

1 个答案:

答案 0 :(得分:1)

尝试在cross_val_score中设置cv=StratifiedKFold(n_splits=5, shuffle=True),看看它是否有所作为。我的理解是train_test_split将在类中随机抽样,但cross_val_score不会(默认情况下)。

您可以使用from sklearn.model_selection import StratifiedKFold

导入分层kfold