从S3 Bucket读取多个镶木地板文件

时间:2018-03-30 14:58:33

标签: apache-spark amazon-s3 pyspark

我正在尝试从包含数天数据的s3存储桶中读取多个镶木地板文件。

s3路径:s3n://<s3path>/dt=*/*.snappy.parquet

用于从多个镶木地板文件中读取数据的Pyspark代码:

s="SELECT * FROM parquet.`s3n://<s3path>/dt=*/*.snappy.parquet`"
c = sqlContext.sql(s)
c.show(2)

错误是:

[Stage 3:> (0 + 3) /  java.lang.UnsupportedOperationException: 
org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary
  at org.apache.parquet.column.Dictionary.decodeToInt(Dictionary.java:48)
  at org.apache.spark.sql.execution.vectorized.OnHeapColumnVector.getInt(OnHeapColumnVector.java:233)
  at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
  at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
  at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:246)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
  at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
  at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
  at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
  at org.apache.spark.scheduler.Task.run(Task.scala:86)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
  at java.lang.Thread.run(Thread.java:745)

工作代码从s3存储桶读取单个文件:

s2="SELECT * FROM parquet.`s3n://<s3path>/dt=2016-02-02/*.snappy.parquet`"
c2 = sqlContext.sql(s2)
c2.show(2)


+------+--------+---------------+-------------+-----------+
|CL1   |CL2     |CL3            |CL3          |  r_CD     |
+------+--------+---------------+-------------+------------
|   18 |YGh4c   |     2016-02-02|     00:32:02|        AC |        
|   18 |YGh4c   |     2016-02-02|     00:32:02|        IC |       
+------+--------+---------------+-------------+------------

我可以使用相同的pyspark命令分别读取存储桶中的文件。为什么扫描整个存储桶会出错?这样做的正确方法是什么?

0 个答案:

没有答案