我如何解决这个问题
ValueError:检查目标时出错:预期conv-decode3具有形状(无,14,300)但是具有形状的数组(6559,16,300)
NUM_WORDS = 3
pool_size = 2
x = Input(shape=(16, 300), name="input")
h = x
h = Conv1D(filters=300, kernel_size=NUM_WORDS,
activation="relu", padding='same', name='Conv1')(h)
h = MaxPooling1D(pool_size=pool_size, name='Maxpool1')(h)
h = Conv1D(filters=150, kernel_size=NUM_WORDS,
activation="relu", padding='same', name='Conv2')(h)
h = MaxPooling1D(pool_size=pool_size, name="Maxpool2")(h)
h = Flatten() (h)
h = Dense(10, name='embedding') (h)
y = h
y = Dense(600, activation="relu") (y)
y = Reshape((4, 150)) (y)
y = Conv1D(filters=150, kernel_size=NUM_WORDS,
activation="relu", padding='same', name='conv-decode1')(y)
y = UpSampling1D(size=pool_size, name='upsampling1')(y)
y = Conv1D(filters=300, kernel_size=NUM_WORDS,
activation="relu", padding='same', name='conv-decode2')(y)
y = UpSampling1D(size=pool_size, name='upsampling2')(y)
return Model(inputs=x, outputs=y, name='AE'), Model(inputs=x, outputs=h, name='encoder')
答案 0 :(得分:1)
我刚刚添加了编辑并打印了模型 - 看起来不错 - 输入形状等于输出形状。 扬
y = UpSampling1D(size=pool_size, name='upsampling2')(y)
autoencoderM = Model(x, y)
myLoss='mean_squared_error'
autoencoderM.compile(optimizer='adadelta', loss=myLoss)
autoencoderM.summary() # will print
输入(InputLayer)(无,16,300)0
Conv1(Conv1D)(无,16,300)270300
。 。
conv-decode2(Conv1D)(无,8,300)135300
总参数:621,010