我有一个多指数df s:
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
pd.MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
s
我想添加一个新的索引列"零"通过匹配索引列"第一个"使用x,y,z到s和"第二"。换句话说,我想重复三次,但是这个额外的索引列有x,y,z。我尝试了reindex(见下文),但为什么它给了我所有的NaN?
mux=pd.MultiIndex.from_product([["x","y","z"],
s.index.get_level_values(0),
s.index.get_level_values(1)],
names=["zero","first", "second"])
t=s.reindex(mux)
t
我也尝试将匹配级别指定为" first"和"秒",但看起来级别只需要一个整数?
答案 0 :(得分:2)
您可以使用reindex
,但必须通过MultiIndex
创建levels
。但它会为现有内容添加新级别,因此如有必要,请添加reorder_levels
和sort_index
:
np.random.seed(123)
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
#print (s)
mux=pd.MultiIndex.from_product([s.index.levels[0],s.index.levels[1], ["x","y","z"]])
t=s.reindex(mux, method='ffill').reorder_levels([2,0,1]).sort_index()
print (t)
x bar one -1.085631
two 0.997345
baz one 0.282978
two -1.506295
foo one -0.578600
two 1.651437
qux one -2.426679
two -0.428913
y bar one -1.085631
two 0.997345
baz one 0.282978
two -1.506295
foo one -0.578600
two 1.651437
qux one -2.426679
two -0.428913
z bar one -1.085631
two 0.997345
baz one 0.282978
two -1.506295
foo one -0.578600
two 1.651437
qux one -2.426679
two -0.428913
dtype: float64
答案 1 :(得分:1)
IIUC,您想要pd.concat
吗?
s = pd.concat([s] * 3, axis=0, keys=['x', 'y', 'z'])
如果需要,重命名轴:
s = s.rename_axis(['zero', 'first', 'second'])
s
zero first second
x bar one 0.510567
two 0.066620
baz one 0.667948
two -1.471894
foo one 1.881198
two 0.143628
qux one 1.108174
two -0.978112
y bar one 0.510567
two 0.066620
baz one 0.667948
two -1.471894
foo one 1.881198
two 0.143628
qux one 1.108174
two -0.978112
z bar one 0.510567
two 0.066620
baz one 0.667948
two -1.471894
foo one 1.881198
two 0.143628
qux one 1.108174
two -0.978112
dtype: float64