Keras自定义损失函数,每个示例具有不同的权重

时间:2018-03-29 07:39:21

标签: python tensorflow keras loss-function

我试图在Keras中实现一个自定义丢失函数,其中每个单独的示例(不是类)具有不同的权重。

准确地说,给定通常的 y_true (例如< 1,1,0>)和 y_pred (例如< 1,0.2,0.8> ),我试图创建权重(例如< 0.81,0.9,1.0>)并将其与 binary_crossentropy 损失函数一起使用。我试过了:

import numpy as np
from keras import backend as K

def my_binary_crossentropy(y_true, y_pred):
    base_factor = 0.9
    num_examples = K.int_shape(y_true)[0]

    out = [ K.pow(base_factor, num_examples - i - 1) for i in range(num_examples) ]
    forgetting_factors = K.stack(out)

    return K.mean(
        forgetting_factors * K.binary_crossentropy(y_true, y_pred),
        axis=-1
    )

使用这个简单的例子可以正常工作:

y_true = K.variable( np.array([1,1,0]) )
y_pred = K.variable( np.array([1,0.2,0.8]) )
print K.eval(my_binary_crossentropy(y_true, y_pred))

但是,当我将其与model.compile(loss=my_binary_crossentropy, ...)一起使用时,我收到以下错误:TypeError: range() integer end argument expected, got NoneType

我尝试了一些事情。我用 K_shape 替换了 K.int_shape ,然后得到:TypeError: range() integer end argument expected, got Tensor.我用 K.arange进一步替换 range() ()现在获得:TypeError: Tensor objects are not iterable when eager execution is not enabled. To iterate over this tensor use tf.map_fn

有人能帮帮我吗?我错过了什么?非常感谢!

2 个答案:

答案 0 :(得分:3)

K.pow可以将一系列指数作为参数。因此,您可以先将指数计算为张量([num_examples - 1, num_examples - 2, ..., 0]),然后将此张量输入K.pow。这里num_examples基本上只是K.shape(y_pred)[0],也是一个张量。

def my_binary_crossentropy(y_true, y_pred):
    base_factor = 0.9
    num_examples = K.cast(K.shape(y_pred)[0], K.floatx())
    exponents = num_examples - K.arange(num_examples) - 1
    forgetting_factors = K.pow(base_factor, exponents)
    forgetting_factors = K.expand_dims(forgetting_factors, axis=-1)
    forgetting_factors = K.print_tensor(forgetting_factors)  # only for debugging

    loss = K.mean(
        forgetting_factors * K.binary_crossentropy(y_true, y_pred),
        axis=-1
    )
    loss = K.print_tensor(loss)  # only for debugging
    return loss

例如,两个K.print_tensor语句打印的输出如下:

model = Sequential()
model.add(Dense(1, activation='sigmoid', input_shape=(100,)))
model.compile(loss=my_binary_crossentropy, optimizer='adam')

model.evaluate(np.zeros((3, 100)), np.ones(3), verbose=0)
[[0.809999943][0.9][1]]
[0.56144917 0.623832464 0.693147182]

model.evaluate(np.zeros((6, 100)), np.ones(6), verbose=0)
[[0.590489924][0.656099916][0.728999913]...]
[0.409296423 0.454773813 0.505304217...]

由于舍入错误,数字不准确。 forgetting_factorsmodel.evaluate之后打印的第一行)确实是0.9的幂。您还可以验证返回的损失值是否会减少0.9(0.623832464 = 0.693147182 * 0.90.56144917 = 0.693147182 * 0.9 ** 2等)。

答案 1 :(得分:1)

在tensorflow中,您首先使用张量预定义图形,然后再运行它。因此,与numpy数组一起工作的函数不能与tensorflow一起工作,这是很常见的。在您的情况下,num_examples是问题所在。

想象一下,在张量流中,每次需要时都不会调用此损失函数,而是在模型训练时,此损失函数将构建用于计算图形内部损失函数的图形。

所以当keras想要尝试在tensorflow中构建你的损失函数时,你的y_true是一个抽象张量,你的第一个形状很可能会有None,因为batch_size还没有被定义。

您必须以一种不依赖于batch_size =>的方式重写损失函数。删除变量num_examples